File size: 4,282 Bytes
8cc5633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# eval_model.py

import json
import os
import pickle

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score

from lightgbm_model.scripts.config_lightgbm import DATA_PATH, RESULTS_DIR
from lightgbm_model.scripts.utils import load_lightgbm_model

# === Ergebnisse-Ordner vorbereiten ===
os.makedirs(RESULTS_DIR, exist_ok=True)

# === Modell und eval_result laden ===
# Modell laden
model = load_lightgbm_model()

# Eval laden
with open(os.path.join(RESULTS_DIR, "lightgbm_eval_result.pkl"), "rb") as f:
    eval_result = pickle.load(f)
X_train = pd.read_csv(os.path.join(RESULTS_DIR, "X_train.csv"))
X_test = pd.read_csv(os.path.join(RESULTS_DIR, "X_test.csv"))
y_test = pd.read_csv(os.path.join(RESULTS_DIR, "y_test.csv"))

# === Lernkurve ===
train_rmse = eval_result["training"]["rmse"]
valid_rmse = eval_result["valid_1"]["rmse"]

plt.figure(figsize=(10, 5))
plt.plot(train_rmse, label="Train RMSE")
plt.plot(valid_rmse, label="Valid RMSE")
plt.axvline(model.best_iteration_, color="gray", linestyle="--", label="Best Iteration")
plt.xlabel("Boosting Round")
plt.ylabel("RMSE")
plt.title("LightGBM Learning Curve")
plt.legend()
plt.tight_layout()
plt.savefig(os.path.join(RESULTS_DIR, "lightgbm_learning_curve.png"))
# plt.show()

# === Metriken berechnen ===
y_pred = model.predict(X_test)
mae = mean_absolute_error(y_test, y_pred)
rmse = np.sqrt(mean_squared_error(y_test, y_pred))
mape = (
    np.mean(
        np.abs(
            (y_test.values.flatten() - y_pred)
            / np.where(y_test.values.flatten() == 0, 1e-10, y_test.values.flatten())
        )
    )
    * 100
)
r2 = r2_score(y_test, y_pred)

print(f"Test MAPE: {mape:.5f} %")
print(f"Test MAE: {mae:.5f}")
print(f"Test RMSE: {rmse:.5f}")
print(f"Test R2: {r2:.5f}")

metrics = {
    "model": "LightGBM",
    "MAE": round(mae, 2),
    "RMSE": round(rmse, 2),
    "MAPE (%)": round(mape, 2),
    "R2": round(r2, 4),
    "unit": "MW",
}

# Pfad setzen
output_path = os.path.join(RESULTS_DIR, "evaluation_metrics_lightgbm.json")
# Speichern
with open(output_path, "w") as f:
    json.dump(metrics, f, indent=4)

print(f"Metriken gespeichert unter {output_path}")

# === Feature Importance ===
feature_importance = pd.DataFrame(
    {"Feature": X_train.columns, "Importance": model.feature_importances_}
).sort_values(by="Importance", ascending=False)

plt.figure(figsize=(10, 6))
plt.barh(feature_importance["Feature"], feature_importance["Importance"])
plt.xlabel("Feature Importance")
plt.title("LightGBM Feature Importance")
plt.gca().invert_yaxis()
plt.tight_layout()
plt.savefig(os.path.join(RESULTS_DIR, "lightgbm_feature_importance.png"))
# plt.show()

# === Vergleichsplots ===
results_df = pd.DataFrame(
    {
        "True Consumption (MW)": y_test.values.flatten(),
        "Predicted Consumption (MW)": y_pred,
    }
)

# Timestamps anhängen
full_df = pd.read_csv(DATA_PATH)
test_dates = full_df.iloc[int(len(full_df) * 0.8) :]["date"].reset_index(drop=True)
results_df["Timestamp"] = pd.to_datetime(test_dates)

# Voller Plot
plt.figure(figsize=(15, 6))
plt.plot(
    results_df["Timestamp"],
    results_df["True Consumption (MW)"],
    label="True",
    color="darkblue",
)
plt.plot(
    results_df["Timestamp"],
    results_df["Predicted Consumption (MW)"],
    label="Predicted",
    color="red",
    linestyle="--",
)
plt.title("Predicted vs True Consumption")
plt.xlabel("Timestamp")
plt.ylabel("Consumption (MW)")
plt.legend()
plt.tight_layout()
plt.savefig(os.path.join(RESULTS_DIR, "lightgbm_comparison_plot.png"))
# plt.show()

# Subset Plot
subset = results_df.iloc[: len(results_df) // 10]
plt.figure(figsize=(15, 6))
plt.plot(
    subset["Timestamp"], subset["True Consumption (MW)"], label="True", color="darkblue"
)
plt.plot(
    subset["Timestamp"],
    subset["Predicted Consumption (MW)"],
    label="Predicted",
    color="red",
    linestyle="--",
)
plt.title("Predicted vs True (First decile)")
plt.xlabel("Timestamp")
plt.ylabel("Consumption (MW)")
plt.legend()
plt.tight_layout()
plt.savefig(os.path.join(RESULTS_DIR, "lightgbm_prediction_with_timestamp.png"))
# plt.show()


# === Ens message ===
print("\nEvaluation completed.")
print(f"All Plots stored in:\n→ {RESULTS_DIR}")