Spaces:
Sleeping
Sleeping
# streamlit_simulation/dummy.py | |
import numpy as np | |
import torch | |
class DummyDataset: | |
def __init__(self, length=100): | |
self.data = np.zeros((length, 10)) # Dummydaten | |
self.scaler = DummyScaler() | |
self.n_channels = 1 | |
self.length = length | |
def __len__(self): | |
return self.length | |
def __getitem__(self, idx): | |
timeseries = np.zeros((48, 1)) # (SEQ_LEN, Channels) | |
target = np.zeros((1, 1)) # Forecast target | |
mask = np.ones((48,)) # Dummy-Maske | |
return timeseries, target, mask | |
class DummyScaler: | |
def inverse_transform(self, x): | |
return x # keine Skalierung nötig | |
class DummyOutput: | |
def __init__(self, forecast_shape): | |
# gib einen echten Tensor zurück, wie vom echten Modell erwartet | |
self.forecast = torch.tensor(np.full(forecast_shape, 42.0), dtype=torch.float32) | |
class DummyTransformerModel: | |
def __call__(self, x_enc, input_mask): | |
batch_size, seq_len, channels = x_enc.shape | |
forecast_shape = (batch_size, 1, channels) | |
return DummyOutput(forecast_shape) | |
class DummyLightGBMModel: | |
def predict(self, X): | |
return np.zeros(len(X)) # ← gibt jetzt np.ndarray zurück | |