Spaces:
Sleeping
Sleeping
import os | |
import pandas as pd | |
from huggingface_hub import hf_hub_download | |
from streamlit_simulation.config_streamlit import DATA_PATH | |
HF_REPO = "dlaj/energy-forecasting-files" | |
HF_FILENAME = "data/processed/energy_consumption_aggregated_cleaned.csv" | |
def load_data(): | |
# Prüfe, ob lokale Datei existiert | |
if not os.path.exists(DATA_PATH): | |
print(f"Lokale Datei nicht gefunden: {DATA_PATH}") | |
print("Lade von Hugging Face...") | |
# Lade von HF Hub | |
downloaded_path = hf_hub_download( | |
repo_id=HF_REPO, | |
filename=HF_FILENAME, | |
repo_type="dataset", | |
cache_dir="hf_cache", # Optional: lokaler Cache-Ordner | |
) | |
return pd.read_csv(downloaded_path, parse_dates=["date"]) | |
print(f"Lade lokale Datei: {DATA_PATH}") | |
return pd.read_csv(DATA_PATH, parse_dates=["date"]) | |
def resolve_csv_path() -> str: | |
if os.path.exists(DATA_PATH): | |
print(f"Lokale Datei verwendet: {DATA_PATH}") | |
return DATA_PATH | |
else: | |
print(f"Lokale Datei nicht gefunden, lade von HF: {HF_FILENAME}") | |
return hf_hub_download( | |
repo_id=HF_REPO, | |
filename=HF_FILENAME, | |
repo_type="dataset", | |
cache_dir="hf_cache", | |
) | |