import os import pandas as pd from huggingface_hub import hf_hub_download from streamlit_simulation.config_streamlit import DATA_PATH HF_REPO = "dlaj/energy-forecasting-files" HF_FILENAME = "data/processed/energy_consumption_aggregated_cleaned.csv" def load_data(): # Prüfe, ob lokale Datei existiert if not os.path.exists(DATA_PATH): print(f"Lokale Datei nicht gefunden: {DATA_PATH}") print("Lade von Hugging Face...") # Lade von HF Hub downloaded_path = hf_hub_download( repo_id=HF_REPO, filename=HF_FILENAME, repo_type="dataset", cache_dir="hf_cache", # Optional: lokaler Cache-Ordner ) return pd.read_csv(downloaded_path, parse_dates=["date"]) print(f"Lade lokale Datei: {DATA_PATH}") return pd.read_csv(DATA_PATH, parse_dates=["date"]) def resolve_csv_path() -> str: if os.path.exists(DATA_PATH): print(f"Lokale Datei verwendet: {DATA_PATH}") return DATA_PATH else: print(f"Lokale Datei nicht gefunden, lade von HF: {HF_FILENAME}") return hf_hub_download( repo_id=HF_REPO, filename=HF_FILENAME, repo_type="dataset", cache_dir="hf_cache", )