Spaces:
Sleeping
Sleeping
tryout
Browse files- streamlit_simulation/app.py +21 -15
- streamlit_simulation/app_backup_hug.py +21 -15
streamlit_simulation/app.py
CHANGED
|
@@ -142,23 +142,29 @@ def load_lightgbm_model():
|
|
| 142 |
def load_transformer_model_and_dataset():
|
| 143 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 144 |
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
|
|
|
|
|
|
| 155 |
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
|
| 161 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
|
| 163 |
@st.cache_data
|
| 164 |
def load_data():
|
|
|
|
| 142 |
def load_transformer_model_and_dataset():
|
| 143 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 144 |
|
| 145 |
+
try:
|
| 146 |
+
with st.spinner("🔄 Loading transformer model..."):
|
| 147 |
+
# Load model
|
| 148 |
+
model = load_moment_model()
|
| 149 |
+
checkpoint_path = hf_hub_download(
|
| 150 |
+
repo_id="dlaj/energy-forecasting-files",
|
| 151 |
+
filename="transformer_model/model_final.pth",
|
| 152 |
+
repo_type="dataset"
|
| 153 |
+
)
|
| 154 |
+
model.load_state_dict(torch.load(checkpoint_path, map_location=device))
|
| 155 |
+
model.to(device)
|
| 156 |
+
model.eval()
|
| 157 |
|
| 158 |
+
# Datasets
|
| 159 |
+
train_dataset = InformerDataset(data_split="train", forecast_horizon=FORECAST_HORIZON, random_seed=13)
|
| 160 |
+
test_dataset = InformerDataset(data_split="test", forecast_horizon=FORECAST_HORIZON, random_seed=13)
|
| 161 |
+
test_dataset.scaler = train_dataset.scaler
|
| 162 |
|
| 163 |
+
return model, test_dataset, device
|
| 164 |
+
|
| 165 |
+
except Exception as e:
|
| 166 |
+
st.error(f"❌ Fehler beim Laden des Transformer-Modells: {e}")
|
| 167 |
+
raise e
|
| 168 |
|
| 169 |
@st.cache_data
|
| 170 |
def load_data():
|
streamlit_simulation/app_backup_hug.py
CHANGED
|
@@ -132,23 +132,29 @@ def load_lightgbm_model():
|
|
| 132 |
def load_transformer_model_and_dataset():
|
| 133 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 134 |
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
|
|
|
|
|
|
| 145 |
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
|
| 151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
|
| 153 |
@st.cache_data
|
| 154 |
def load_data():
|
|
|
|
| 132 |
def load_transformer_model_and_dataset():
|
| 133 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 134 |
|
| 135 |
+
try:
|
| 136 |
+
with st.spinner("🔄 Loading transformer model..."):
|
| 137 |
+
# Load model
|
| 138 |
+
model = load_moment_model()
|
| 139 |
+
checkpoint_path = hf_hub_download(
|
| 140 |
+
repo_id="dlaj/energy-forecasting-files",
|
| 141 |
+
filename="transformer_model/model_final.pth",
|
| 142 |
+
repo_type="dataset"
|
| 143 |
+
)
|
| 144 |
+
model.load_state_dict(torch.load(checkpoint_path, map_location=device))
|
| 145 |
+
model.to(device)
|
| 146 |
+
model.eval()
|
| 147 |
|
| 148 |
+
# Datasets
|
| 149 |
+
train_dataset = InformerDataset(data_split="train", forecast_horizon=FORECAST_HORIZON, random_seed=13)
|
| 150 |
+
test_dataset = InformerDataset(data_split="test", forecast_horizon=FORECAST_HORIZON, random_seed=13)
|
| 151 |
+
test_dataset.scaler = train_dataset.scaler
|
| 152 |
|
| 153 |
+
return model, test_dataset, device
|
| 154 |
+
|
| 155 |
+
except Exception as e:
|
| 156 |
+
st.error(f"❌ Fehler beim Laden des Transformer-Modells: {e}")
|
| 157 |
+
raise e
|
| 158 |
|
| 159 |
@st.cache_data
|
| 160 |
def load_data():
|