Spaces:
Sleeping
Sleeping
tryout
Browse files
streamlit_simulation/app.py
CHANGED
|
@@ -251,8 +251,8 @@ def render_simulation_view(timestamp, prediction, actual, progress, fig, paused=
|
|
| 251 |
|
| 252 |
st.metric("Prediction", f"{prediction:,.0f} MW" if prediction is not None else "–")
|
| 253 |
st.metric("Actual", f"{actual:,.0f} MW" if actual is not None else "–")
|
| 254 |
-
st.caption("Simulation Progress")
|
| 255 |
-
st.progress(progress)
|
| 256 |
|
| 257 |
if len(st.session_state.true_vals) > 1:
|
| 258 |
true_arr = np.array(st.session_state.true_vals)
|
|
|
|
| 251 |
|
| 252 |
st.metric("Prediction", f"{prediction:,.0f} MW" if prediction is not None else "–")
|
| 253 |
st.metric("Actual", f"{actual:,.0f} MW" if actual is not None else "–")
|
| 254 |
+
#st.caption("Simulation Progress")
|
| 255 |
+
#st.progress(progress)
|
| 256 |
|
| 257 |
if len(st.session_state.true_vals) > 1:
|
| 258 |
true_arr = np.array(st.session_state.true_vals)
|
streamlit_simulation/app_backup_hug.py
ADDED
|
@@ -0,0 +1,546 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys
|
| 2 |
+
import os
|
| 3 |
+
import streamlit as st
|
| 4 |
+
import pickle
|
| 5 |
+
import pandas as pd
|
| 6 |
+
import time
|
| 7 |
+
import numpy as np
|
| 8 |
+
import matplotlib.pyplot as plt
|
| 9 |
+
import matplotlib.dates as mdates
|
| 10 |
+
import warnings
|
| 11 |
+
import torch
|
| 12 |
+
|
| 13 |
+
from config_streamlit import (MODEL_PATH_LIGHTGBM, DATA_PATH, TRAIN_RATIO,
|
| 14 |
+
TEXT_COLOR, HEADER_COLOR, ACCENT_COLOR,
|
| 15 |
+
BUTTON_BG, BUTTON_HOVER_BG, BG_COLOR,
|
| 16 |
+
INPUT_BG, PROGRESS_COLOR, PLOT_COLOR
|
| 17 |
+
)
|
| 18 |
+
from lightgbm_model.scripts.config_lightgbm import FEATURES
|
| 19 |
+
from transformer_model.scripts.utils.informer_dataset_class import InformerDataset
|
| 20 |
+
from transformer_model.scripts.training.load_basis_model import load_moment_model
|
| 21 |
+
from transformer_model.scripts.config_transformer import CHECKPOINT_DIR, FORECAST_HORIZON, SEQ_LEN
|
| 22 |
+
from sklearn.preprocessing import StandardScaler
|
| 23 |
+
|
| 24 |
+
from huggingface_hub import hf_hub_download
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
# ============================== Layout ==============================
|
| 28 |
+
|
| 29 |
+
# Streamlit & warnings config
|
| 30 |
+
warnings.filterwarnings("ignore", category=FutureWarning)
|
| 31 |
+
st.set_page_config(page_title="Electricity Consumption Forecast", layout="wide")
|
| 32 |
+
|
| 33 |
+
#CSS part
|
| 34 |
+
st.markdown(f"""
|
| 35 |
+
<style>
|
| 36 |
+
body, .block-container {{
|
| 37 |
+
background-color: {BG_COLOR} !important;
|
| 38 |
+
}}
|
| 39 |
+
|
| 40 |
+
html, body, [class*="css"] {{
|
| 41 |
+
color: {TEXT_COLOR} !important;
|
| 42 |
+
font-family: 'sans-serif';
|
| 43 |
+
}}
|
| 44 |
+
|
| 45 |
+
h1, h2, h3, h4, h5, h6 {{
|
| 46 |
+
color: {HEADER_COLOR} !important;
|
| 47 |
+
}}
|
| 48 |
+
|
| 49 |
+
.stButton > button {{
|
| 50 |
+
background-color: {BUTTON_BG};
|
| 51 |
+
color: {TEXT_COLOR};
|
| 52 |
+
border: 1px solid {ACCENT_COLOR};
|
| 53 |
+
}}
|
| 54 |
+
|
| 55 |
+
.stButton > button:hover {{
|
| 56 |
+
background-color: {BUTTON_HOVER_BG};
|
| 57 |
+
}}
|
| 58 |
+
|
| 59 |
+
.stSelectbox div[data-baseweb="select"],
|
| 60 |
+
.stDateInput input {{
|
| 61 |
+
background-color: {INPUT_BG} !important;
|
| 62 |
+
color: {TEXT_COLOR} !important;
|
| 63 |
+
}}
|
| 64 |
+
|
| 65 |
+
[data-testid="stMetricLabel"],
|
| 66 |
+
[data-testid="stMetricValue"] {{
|
| 67 |
+
color: {TEXT_COLOR} !important;
|
| 68 |
+
}}
|
| 69 |
+
|
| 70 |
+
.stMarkdown p {{
|
| 71 |
+
color: {TEXT_COLOR} !important;
|
| 72 |
+
}}
|
| 73 |
+
|
| 74 |
+
.stDataFrame tbody tr td {{
|
| 75 |
+
color: {TEXT_COLOR} !important;
|
| 76 |
+
}}
|
| 77 |
+
|
| 78 |
+
.stProgress > div > div {{
|
| 79 |
+
background-color: {PROGRESS_COLOR} !important;
|
| 80 |
+
}}
|
| 81 |
+
|
| 82 |
+
/* Alle Label-Texte für Inputs/Sliders */
|
| 83 |
+
label {{
|
| 84 |
+
color: {TEXT_COLOR} !important;
|
| 85 |
+
}}
|
| 86 |
+
|
| 87 |
+
/* Text in selectbox-Optionsfeldern */
|
| 88 |
+
.stSelectbox label, .stSelectbox div {{
|
| 89 |
+
color: {TEXT_COLOR} !important;
|
| 90 |
+
}}
|
| 91 |
+
|
| 92 |
+
/* DateInput angleichen an Selectbox */
|
| 93 |
+
.stDateInput input {{
|
| 94 |
+
background-color: #f2f6fa !important;
|
| 95 |
+
color: {TEXT_COLOR} !important;
|
| 96 |
+
border: none !important;
|
| 97 |
+
border-radius: 5px !important;
|
| 98 |
+
}}
|
| 99 |
+
|
| 100 |
+
</style>
|
| 101 |
+
""", unsafe_allow_html=True)
|
| 102 |
+
|
| 103 |
+
st.title("Electricity Consumption Forecast: Hourly Simulation")
|
| 104 |
+
st.write("Welcome to the simulation interface!")
|
| 105 |
+
|
| 106 |
+
# ============================== Session State Init ==============================
|
| 107 |
+
def init_session_state():
|
| 108 |
+
defaults = {
|
| 109 |
+
"is_running": False,
|
| 110 |
+
"start_index": 0,
|
| 111 |
+
"true_vals": [],
|
| 112 |
+
"pred_vals": [],
|
| 113 |
+
"true_timestamps": [],
|
| 114 |
+
"pred_timestamps": [],
|
| 115 |
+
"last_fig": None,
|
| 116 |
+
"valid_pos": 0
|
| 117 |
+
}
|
| 118 |
+
for key, value in defaults.items():
|
| 119 |
+
if key not in st.session_state:
|
| 120 |
+
st.session_state[key] = value
|
| 121 |
+
|
| 122 |
+
init_session_state()
|
| 123 |
+
|
| 124 |
+
# ============================== Loaders ==============================
|
| 125 |
+
|
| 126 |
+
@st.cache_data
|
| 127 |
+
def load_lightgbm_model():
|
| 128 |
+
with open(MODEL_PATH_LIGHTGBM, "rb") as f:
|
| 129 |
+
return pickle.load(f)
|
| 130 |
+
|
| 131 |
+
@st.cache_resource
|
| 132 |
+
def load_transformer_model_and_dataset():
|
| 133 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 134 |
+
|
| 135 |
+
# Load model
|
| 136 |
+
model = load_moment_model()
|
| 137 |
+
checkpoint_path = hf_hub_download(
|
| 138 |
+
repo_id="dlaj/energy-forecasting-files",
|
| 139 |
+
filename="transformer_model/model_final.pth",
|
| 140 |
+
repo_type="dataset"
|
| 141 |
+
)
|
| 142 |
+
model.load_state_dict(torch.load(checkpoint_path, map_location=device))
|
| 143 |
+
model.to(device)
|
| 144 |
+
model.eval()
|
| 145 |
+
|
| 146 |
+
# Datasets
|
| 147 |
+
train_dataset = InformerDataset(data_split="train", forecast_horizon=FORECAST_HORIZON, random_seed=13)
|
| 148 |
+
test_dataset = InformerDataset(data_split="test", forecast_horizon=FORECAST_HORIZON, random_seed=13)
|
| 149 |
+
test_dataset.scaler = train_dataset.scaler
|
| 150 |
+
|
| 151 |
+
return model, test_dataset, device
|
| 152 |
+
|
| 153 |
+
@st.cache_data
|
| 154 |
+
def load_data():
|
| 155 |
+
csv_path = hf_hub_download(
|
| 156 |
+
repo_id="dlaj/energy-forecasting-files",
|
| 157 |
+
filename="data/processed/energy_consumption_aggregated_cleaned.csv",
|
| 158 |
+
repo_type="dataset"
|
| 159 |
+
)
|
| 160 |
+
df = pd.read_csv(csv_path, parse_dates=["date"])
|
| 161 |
+
return df
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
# ============================== Utility Functions ==============================
|
| 165 |
+
|
| 166 |
+
def predict_transformer_step(model, dataset, idx, device):
|
| 167 |
+
"""Performs a single prediction step with the transformer model."""
|
| 168 |
+
timeseries, _, input_mask = dataset[idx]
|
| 169 |
+
timeseries = torch.tensor(timeseries, dtype=torch.float32).unsqueeze(0).to(device)
|
| 170 |
+
input_mask = torch.tensor(input_mask, dtype=torch.bool).unsqueeze(0).to(device)
|
| 171 |
+
|
| 172 |
+
with torch.no_grad():
|
| 173 |
+
output = model(x_enc=timeseries, input_mask=input_mask)
|
| 174 |
+
|
| 175 |
+
pred = output.forecast[:, 0, :].cpu().numpy().flatten()
|
| 176 |
+
|
| 177 |
+
# Rückskalieren
|
| 178 |
+
dummy = np.zeros((len(pred), dataset.n_channels))
|
| 179 |
+
dummy[:, 0] = pred
|
| 180 |
+
pred_original = dataset.scaler.inverse_transform(dummy)[:, 0]
|
| 181 |
+
|
| 182 |
+
return float(pred_original[0])
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
def init_simulation_layout():
|
| 186 |
+
col1, spacer, col2 = st.columns([3, 0.2, 1])
|
| 187 |
+
plot_title = col1.empty()
|
| 188 |
+
plot_container = col1.empty()
|
| 189 |
+
x_axis_label = col1.empty()
|
| 190 |
+
info_container = col2.empty()
|
| 191 |
+
return plot_title, plot_container, x_axis_label, info_container
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
def create_prediction_plot(pred_timestamps, pred_vals, true_timestamps, true_vals, window_hours, y_min=None, y_max=None):
|
| 196 |
+
"""Generates the matplotlib figure for plotting prediction vs. actual."""
|
| 197 |
+
fig, ax = plt.subplots(figsize=(8, 5), constrained_layout=True, facecolor=PLOT_COLOR)
|
| 198 |
+
ax.set_facecolor(PLOT_COLOR)
|
| 199 |
+
|
| 200 |
+
ax.plot(pred_timestamps[-window_hours:], pred_vals[-window_hours:], label="Prediction", color="#EF233C", linestyle="--")
|
| 201 |
+
if true_vals:
|
| 202 |
+
ax.plot(true_timestamps[-window_hours:], true_vals[-window_hours:], label="Actual", color="#0077B6")
|
| 203 |
+
|
| 204 |
+
ax.set_ylabel("Consumption (MW)", fontsize=8, color=TEXT_COLOR)
|
| 205 |
+
ax.legend(
|
| 206 |
+
fontsize=8,
|
| 207 |
+
loc="upper left",
|
| 208 |
+
bbox_to_anchor=(0, 0.95),
|
| 209 |
+
facecolor= INPUT_BG, # INPUT_BG
|
| 210 |
+
edgecolor= ACCENT_COLOR, # ACCENT_COLOR
|
| 211 |
+
labelcolor= TEXT_COLOR # TEXT_COLOR
|
| 212 |
+
)
|
| 213 |
+
ax.yaxis.grid(True, linestyle=':', linewidth=0.5, alpha=0.7)
|
| 214 |
+
ax.set_ylim(y_min, y_max)
|
| 215 |
+
ax.xaxis.set_major_locator(mdates.DayLocator(interval=1))
|
| 216 |
+
ax.xaxis.set_major_formatter(mdates.DateFormatter("%m-%d"))
|
| 217 |
+
ax.tick_params(axis="x", labelrotation=0, labelsize=5, colors=TEXT_COLOR)
|
| 218 |
+
ax.tick_params(axis="y", labelsize=5, colors=TEXT_COLOR)
|
| 219 |
+
#fig.patch.set_facecolor('#e6ecf0') # outer area
|
| 220 |
+
|
| 221 |
+
for spine in ax.spines.values():
|
| 222 |
+
spine.set_visible(False)
|
| 223 |
+
|
| 224 |
+
st.session_state.last_fig = fig
|
| 225 |
+
return fig
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
def render_simulation_view(timestamp, prediction, actual, progress, fig, paused=False):
|
| 229 |
+
"""Displays the simulation plot and metrics in the UI."""
|
| 230 |
+
title = "Actual vs. Prediction (Paused)" if paused else "Actual vs. Prediction"
|
| 231 |
+
plot_title.markdown(
|
| 232 |
+
f"<div style='text-align: center; font-size: 20pt; font-weight: bold; color: {TEXT_COLOR}; margin-bottom: -0.7rem; margin-top: 0rem;'>"
|
| 233 |
+
f"{title}</div>",
|
| 234 |
+
unsafe_allow_html=True
|
| 235 |
+
)
|
| 236 |
+
plot_container.pyplot(fig)
|
| 237 |
+
|
| 238 |
+
st.markdown("<div style='margin-bottom: 0.5rem;'></div>", unsafe_allow_html=True)
|
| 239 |
+
x_axis_label.markdown(
|
| 240 |
+
f"<div style='text-align: center; font-size: 14pt; color: {TEXT_COLOR}; margin-top: -0.5rem;'>"
|
| 241 |
+
f"Time</div>",
|
| 242 |
+
unsafe_allow_html=True
|
| 243 |
+
)
|
| 244 |
+
|
| 245 |
+
with info_container.container():
|
| 246 |
+
st.markdown("<div style='margin-top: 5rem;'></div>", unsafe_allow_html=True)
|
| 247 |
+
st.markdown(
|
| 248 |
+
f"<span style='font-size: 24px; font-weight: 600; color: {HEADER_COLOR} !important;'>Time: {timestamp}</span>",
|
| 249 |
+
unsafe_allow_html=True
|
| 250 |
+
)
|
| 251 |
+
|
| 252 |
+
st.metric("Prediction", f"{prediction:,.0f} MW" if prediction is not None else "–")
|
| 253 |
+
st.metric("Actual", f"{actual:,.0f} MW" if actual is not None else "–")
|
| 254 |
+
st.caption("Simulation Progress")
|
| 255 |
+
st.progress(progress)
|
| 256 |
+
|
| 257 |
+
if len(st.session_state.true_vals) > 1:
|
| 258 |
+
true_arr = np.array(st.session_state.true_vals)
|
| 259 |
+
pred_arr = np.array(st.session_state.pred_vals[:-1])
|
| 260 |
+
|
| 261 |
+
min_len = min(len(true_arr), len(pred_arr)) #just start if there are 2 actual values
|
| 262 |
+
if min_len >= 1:
|
| 263 |
+
errors = np.abs(true_arr[:min_len] - pred_arr[:min_len])
|
| 264 |
+
mape = np.mean(errors / np.where(true_arr[:min_len] == 0, 1e-10, true_arr[:min_len])) * 100
|
| 265 |
+
mae = np.mean(errors)
|
| 266 |
+
max_error = np.max(errors)
|
| 267 |
+
|
| 268 |
+
st.divider()
|
| 269 |
+
st.markdown(
|
| 270 |
+
f"<span style='font-size: 24px; font-weight: 600; color: {HEADER_COLOR} !important;'>Interim Metrics</span>",
|
| 271 |
+
unsafe_allow_html=True
|
| 272 |
+
)
|
| 273 |
+
st.metric("MAPE (so far)", f"{mape:.2f} %")
|
| 274 |
+
st.metric("MAE (so far)", f"{mae:,.0f} MW")
|
| 275 |
+
st.metric("Max Error", f"{max_error:,.0f} MW")
|
| 276 |
+
|
| 277 |
+
|
| 278 |
+
|
| 279 |
+
# ============================== Data Preparation ==============================
|
| 280 |
+
|
| 281 |
+
df_full = load_data()
|
| 282 |
+
|
| 283 |
+
# Split Train/Test
|
| 284 |
+
train_size = int(len(df_full) * TRAIN_RATIO)
|
| 285 |
+
test_df_raw = df_full.iloc[train_size:].reset_index(drop=True)
|
| 286 |
+
|
| 287 |
+
# Start at first full hour (00:00)
|
| 288 |
+
first_full_day_index = test_df_raw[test_df_raw["date"].dt.time == pd.Timestamp("00:00:00").time()].index[0]
|
| 289 |
+
test_df_full = test_df_raw.iloc[first_full_day_index:].reset_index(drop=True)
|
| 290 |
+
|
| 291 |
+
# Select simulation window via date picker
|
| 292 |
+
min_date = test_df_full["date"].min().date()
|
| 293 |
+
max_date = test_df_full["date"].max().date()
|
| 294 |
+
|
| 295 |
+
# ============================== UI Controls ==============================
|
| 296 |
+
|
| 297 |
+
st.markdown("### Simulation Settings")
|
| 298 |
+
col1, col2 = st.columns([1, 1])
|
| 299 |
+
|
| 300 |
+
with col1:
|
| 301 |
+
st.markdown("**General Settings**")
|
| 302 |
+
model_choice = st.selectbox("Choose prediction model", ["LightGBM", "Transformer Model (moments)"])
|
| 303 |
+
if model_choice == "Transformer Model(moments)":
|
| 304 |
+
st.caption("⚠️ Note: Transformer model runs slower without GPU. (Use Speed = 10)")
|
| 305 |
+
window_days = st.selectbox("Display window (days)", options=[3, 5, 7], index=0)
|
| 306 |
+
window_hours = window_days * 24
|
| 307 |
+
speed = st.slider("Speed", 1, 10, 5)
|
| 308 |
+
|
| 309 |
+
with col2:
|
| 310 |
+
st.markdown(f"**Date Range** (from {min_date} to {max_date})")
|
| 311 |
+
start_date = st.date_input("Start Date", value=min_date, min_value=min_date, max_value=max_date)
|
| 312 |
+
end_date = st.date_input("End Date", value=max_date, min_value=min_date, max_value=max_date)
|
| 313 |
+
|
| 314 |
+
|
| 315 |
+
# ============================== Data Preparation (filtered) ==============================
|
| 316 |
+
|
| 317 |
+
# final filtered date window
|
| 318 |
+
test_df_filtered = test_df_full[
|
| 319 |
+
(test_df_full["date"].dt.date >= start_date) &
|
| 320 |
+
(test_df_full["date"].dt.date <= end_date)
|
| 321 |
+
].reset_index(drop=True)
|
| 322 |
+
|
| 323 |
+
# For progression bar
|
| 324 |
+
total_steps_ui = len(test_df_filtered)
|
| 325 |
+
|
| 326 |
+
# ============================== Buttons ==============================
|
| 327 |
+
|
| 328 |
+
st.markdown("### Start Simulation")
|
| 329 |
+
col1, col2, col3 = st.columns([1, 1, 14])
|
| 330 |
+
with col1:
|
| 331 |
+
play_pause_text = "▶️ Start" if not st.session_state.is_running else "⏸️ Pause"
|
| 332 |
+
if st.button(play_pause_text):
|
| 333 |
+
st.session_state.is_running = not st.session_state.is_running
|
| 334 |
+
st.rerun()
|
| 335 |
+
with col2:
|
| 336 |
+
reset_button = st.button("🔄 Reset")
|
| 337 |
+
|
| 338 |
+
# Reset logic
|
| 339 |
+
if reset_button:
|
| 340 |
+
st.session_state.start_index = 0
|
| 341 |
+
st.session_state.pred_vals = []
|
| 342 |
+
st.session_state.true_vals = []
|
| 343 |
+
st.session_state.pred_timestamps = []
|
| 344 |
+
st.session_state.true_timestamps = []
|
| 345 |
+
st.session_state.last_fig = None
|
| 346 |
+
st.session_state.is_running = False
|
| 347 |
+
st.session_state.valid_pos = 0
|
| 348 |
+
st.rerun()
|
| 349 |
+
|
| 350 |
+
# Auto-reset on critical parameter change while running
|
| 351 |
+
if st.session_state.is_running and (
|
| 352 |
+
start_date != st.session_state.get("last_start_date") or
|
| 353 |
+
end_date != st.session_state.get("last_end_date") or
|
| 354 |
+
model_choice != st.session_state.get("last_model_choice")
|
| 355 |
+
):
|
| 356 |
+
st.session_state.start_index = 0
|
| 357 |
+
st.session_state.pred_vals = []
|
| 358 |
+
st.session_state.true_vals = []
|
| 359 |
+
st.session_state.pred_timestamps = []
|
| 360 |
+
st.session_state.true_timestamps = []
|
| 361 |
+
st.session_state.last_fig = None
|
| 362 |
+
st.session_state.valid_pos = 0
|
| 363 |
+
st.rerun()
|
| 364 |
+
|
| 365 |
+
# Track current selections for change detection
|
| 366 |
+
st.session_state.last_start_date = start_date
|
| 367 |
+
st.session_state.last_end_date = end_date
|
| 368 |
+
st.session_state.last_model_choice = model_choice
|
| 369 |
+
|
| 370 |
+
|
| 371 |
+
# ============================== Paused Mode ==============================
|
| 372 |
+
|
| 373 |
+
if not st.session_state.is_running and st.session_state.last_fig is not None:
|
| 374 |
+
st.write("Simulation paused...")
|
| 375 |
+
plot_title, plot_container, x_axis_label, info_container = init_simulation_layout()
|
| 376 |
+
|
| 377 |
+
timestamp = st.session_state.pred_timestamps[-1] if st.session_state.pred_timestamps else "–"
|
| 378 |
+
prediction = st.session_state.pred_vals[-1] if st.session_state.pred_vals else None
|
| 379 |
+
actual = st.session_state.true_vals[-1] if st.session_state.true_vals else None
|
| 380 |
+
progress = st.session_state.start_index / total_steps_ui
|
| 381 |
+
|
| 382 |
+
render_simulation_view(timestamp, prediction, actual, progress, st.session_state.last_fig, paused=True)
|
| 383 |
+
|
| 384 |
+
|
| 385 |
+
# ============================== initialize values ==============================
|
| 386 |
+
|
| 387 |
+
#if lightGbm use testdata from above
|
| 388 |
+
if model_choice == "LightGBM":
|
| 389 |
+
test_df = test_df_filtered.copy()
|
| 390 |
+
|
| 391 |
+
#Shared state references for storing predictions and ground truths
|
| 392 |
+
|
| 393 |
+
true_vals = st.session_state.true_vals
|
| 394 |
+
pred_vals = st.session_state.pred_vals
|
| 395 |
+
true_timestamps = st.session_state.true_timestamps
|
| 396 |
+
pred_timestamps = st.session_state.pred_timestamps
|
| 397 |
+
|
| 398 |
+
# ============================== LightGBM Simulation ==============================
|
| 399 |
+
|
| 400 |
+
if model_choice == "LightGBM" and st.session_state.is_running:
|
| 401 |
+
model = load_lightgbm_model()
|
| 402 |
+
st.write("Simulation started...")
|
| 403 |
+
st.markdown('<div id="simulation"></div>', unsafe_allow_html=True)
|
| 404 |
+
|
| 405 |
+
plot_title, plot_container, x_axis_label, info_container = init_simulation_layout()
|
| 406 |
+
|
| 407 |
+
for i in range(st.session_state.start_index, len(test_df)):
|
| 408 |
+
if not st.session_state.is_running:
|
| 409 |
+
break
|
| 410 |
+
|
| 411 |
+
current = test_df.iloc[i]
|
| 412 |
+
timestamp = current["date"]
|
| 413 |
+
features = current[FEATURES].values.reshape(1, -1)
|
| 414 |
+
prediction = model.predict(features)[0]
|
| 415 |
+
|
| 416 |
+
pred_vals.append(prediction)
|
| 417 |
+
pred_timestamps.append(timestamp)
|
| 418 |
+
|
| 419 |
+
if i >= 1:
|
| 420 |
+
prev_actual = test_df.iloc[i - 1]["consumption_MW"]
|
| 421 |
+
prev_time = test_df.iloc[i - 1]["date"]
|
| 422 |
+
true_vals.append(prev_actual)
|
| 423 |
+
true_timestamps.append(prev_time)
|
| 424 |
+
|
| 425 |
+
fig = create_prediction_plot(
|
| 426 |
+
pred_timestamps, pred_vals,
|
| 427 |
+
true_timestamps, true_vals,
|
| 428 |
+
window_hours,
|
| 429 |
+
y_min= test_df_filtered["consumption_MW"].min() - 2000,
|
| 430 |
+
y_max= test_df_filtered["consumption_MW"].max() + 2000
|
| 431 |
+
)
|
| 432 |
+
|
| 433 |
+
render_simulation_view(timestamp, prediction, prev_actual if i >= 1 else None, i / len(test_df), fig)
|
| 434 |
+
|
| 435 |
+
plt.close(fig) # Speicher freigeben
|
| 436 |
+
|
| 437 |
+
st.session_state.start_index = i + 1
|
| 438 |
+
time.sleep(1 / (speed + 1e-9))
|
| 439 |
+
|
| 440 |
+
st.success("Simulation completed!")
|
| 441 |
+
|
| 442 |
+
|
| 443 |
+
|
| 444 |
+
# ============================== Transformer Simulation ==============================
|
| 445 |
+
|
| 446 |
+
if model_choice == "Transformer Model(moments)":
|
| 447 |
+
if st.session_state.is_running:
|
| 448 |
+
st.write("Simulation started (Transformer)...")
|
| 449 |
+
st.markdown('<div id="simulation"></div>', unsafe_allow_html=True)
|
| 450 |
+
|
| 451 |
+
plot_title, plot_container, x_axis_label, info_container = init_simulation_layout()
|
| 452 |
+
|
| 453 |
+
# Zugriff auf Modell, Dataset, Device
|
| 454 |
+
model, test_dataset, device = load_transformer_model_and_dataset()
|
| 455 |
+
data = test_dataset.data # bereits skaliert
|
| 456 |
+
scaler = test_dataset.scaler
|
| 457 |
+
n_channels = test_dataset.n_channels
|
| 458 |
+
|
| 459 |
+
test_start_idx = len(InformerDataset(data_split="train", forecast_horizon=FORECAST_HORIZON)) + SEQ_LEN
|
| 460 |
+
base_timestamp = pd.read_csv(DATA_PATH, parse_dates=["date"])["date"].iloc[test_start_idx] #get original timestamp for later, cause not in dataset anymore
|
| 461 |
+
|
| 462 |
+
# Schritt 1: Finde Index, ab dem Stunde = 00:00 ist
|
| 463 |
+
offset = 0
|
| 464 |
+
while (base_timestamp + pd.Timedelta(hours=offset)).time() != pd.Timestamp("00:00:00").time():
|
| 465 |
+
offset += 1
|
| 466 |
+
|
| 467 |
+
# Neuer Startindex in der Simulation
|
| 468 |
+
start_index = offset
|
| 469 |
+
|
| 470 |
+
# Session-State bei Bedarf initial setzen
|
| 471 |
+
if "start_index" not in st.session_state or st.session_state.start_index == 0:
|
| 472 |
+
st.session_state.start_index = start_index
|
| 473 |
+
|
| 474 |
+
|
| 475 |
+
# Vorbereiten: Liste der gültigen i-Werte im gewünschten Zeitraum
|
| 476 |
+
valid_indices = []
|
| 477 |
+
for i in range(start_index, len(test_dataset)):
|
| 478 |
+
timestamp = base_timestamp + pd.Timedelta(hours=i)
|
| 479 |
+
if start_date <= timestamp.date() <= end_date:
|
| 480 |
+
valid_indices.append(i)
|
| 481 |
+
|
| 482 |
+
# Fortschrittsanzeige
|
| 483 |
+
total_steps = len(valid_indices)
|
| 484 |
+
|
| 485 |
+
# Aktueller Fortschritt in der Liste (nicht: globaler Dataset-Index!)
|
| 486 |
+
if "valid_pos" not in st.session_state:
|
| 487 |
+
st.session_state.valid_pos = 0
|
| 488 |
+
|
| 489 |
+
# Hauptschleife: Nur noch über gültige Indizes iterieren
|
| 490 |
+
for relative_idx, i in enumerate(valid_indices[st.session_state.valid_pos:]):
|
| 491 |
+
|
| 492 |
+
#for i in range(st.session_state.start_index, len(test_dataset)):
|
| 493 |
+
if not st.session_state.is_running:
|
| 494 |
+
break
|
| 495 |
+
|
| 496 |
+
current_pred = predict_transformer_step(model, test_dataset, i, device)
|
| 497 |
+
current_time = base_timestamp + pd.Timedelta(hours=i)
|
| 498 |
+
|
| 499 |
+
pred_vals.append(current_pred)
|
| 500 |
+
pred_timestamps.append(current_time)
|
| 501 |
+
|
| 502 |
+
if i >= 1:
|
| 503 |
+
prev_actual = test_dataset[i - 1][1][0, 0] # erster Forecast-Wert der letzten Zeile
|
| 504 |
+
# Rückskalieren
|
| 505 |
+
dummy_actual = np.zeros((1, n_channels))
|
| 506 |
+
dummy_actual[:, 0] = prev_actual
|
| 507 |
+
actual_val = scaler.inverse_transform(dummy_actual)[0, 0]
|
| 508 |
+
|
| 509 |
+
true_time = current_time - pd.Timedelta(hours=1)
|
| 510 |
+
|
| 511 |
+
if true_time >= pd.to_datetime(start_date):
|
| 512 |
+
true_vals.append(actual_val)
|
| 513 |
+
true_timestamps.append(true_time)
|
| 514 |
+
|
| 515 |
+
# Plot erzeugen
|
| 516 |
+
fig = create_prediction_plot(
|
| 517 |
+
pred_timestamps, pred_vals,
|
| 518 |
+
true_timestamps, true_vals,
|
| 519 |
+
window_hours,
|
| 520 |
+
y_min= test_df_filtered["consumption_MW"].min() - 2000,
|
| 521 |
+
y_max= test_df_filtered["consumption_MW"].max() + 2000
|
| 522 |
+
)
|
| 523 |
+
if len(pred_vals) >= 2 and len(true_vals) >= 1:
|
| 524 |
+
render_simulation_view(current_time, current_pred, actual_val if i >= 1 else None, st.session_state.valid_pos / total_steps, fig)
|
| 525 |
+
|
| 526 |
+
plt.close(fig) # Speicher freigeben
|
| 527 |
+
|
| 528 |
+
st.session_state.valid_pos += 1
|
| 529 |
+
time.sleep(1 / (speed + 1e-9))
|
| 530 |
+
|
| 531 |
+
st.success("Simulation completed!")
|
| 532 |
+
|
| 533 |
+
|
| 534 |
+
# ============================== Scroll Sync ==============================
|
| 535 |
+
|
| 536 |
+
st.markdown("""
|
| 537 |
+
<script>
|
| 538 |
+
window.addEventListener("message", (event) => {
|
| 539 |
+
if (event.data.type === "save_scroll") {
|
| 540 |
+
const pyScroll = event.data.scrollY;
|
| 541 |
+
window.parent.postMessage({type: "streamlit:setComponentValue", value: pyScroll}, "*");
|
| 542 |
+
}
|
| 543 |
+
});
|
| 544 |
+
</script>
|
| 545 |
+
""", unsafe_allow_html=True)
|
| 546 |
+
|