Spaces:
Paused
Paused
Upload 3 files
Browse files- sgm/__init__.py +4 -0
- sgm/lr_scheduler.py +135 -0
- sgm/util.py +248 -0
sgm/__init__.py
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .models import AutoencodingEngine, DiffusionEngine
|
| 2 |
+
from .util import get_configs_path, instantiate_from_config
|
| 3 |
+
|
| 4 |
+
__version__ = "0.1.0"
|
sgm/lr_scheduler.py
ADDED
|
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
class LambdaWarmUpCosineScheduler:
|
| 5 |
+
"""
|
| 6 |
+
note: use with a base_lr of 1.0
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
def __init__(
|
| 10 |
+
self,
|
| 11 |
+
warm_up_steps,
|
| 12 |
+
lr_min,
|
| 13 |
+
lr_max,
|
| 14 |
+
lr_start,
|
| 15 |
+
max_decay_steps,
|
| 16 |
+
verbosity_interval=0,
|
| 17 |
+
):
|
| 18 |
+
self.lr_warm_up_steps = warm_up_steps
|
| 19 |
+
self.lr_start = lr_start
|
| 20 |
+
self.lr_min = lr_min
|
| 21 |
+
self.lr_max = lr_max
|
| 22 |
+
self.lr_max_decay_steps = max_decay_steps
|
| 23 |
+
self.last_lr = 0.0
|
| 24 |
+
self.verbosity_interval = verbosity_interval
|
| 25 |
+
|
| 26 |
+
def schedule(self, n, **kwargs):
|
| 27 |
+
if self.verbosity_interval > 0:
|
| 28 |
+
if n % self.verbosity_interval == 0:
|
| 29 |
+
print(f"current step: {n}, recent lr-multiplier: {self.last_lr}")
|
| 30 |
+
if n < self.lr_warm_up_steps:
|
| 31 |
+
lr = (
|
| 32 |
+
self.lr_max - self.lr_start
|
| 33 |
+
) / self.lr_warm_up_steps * n + self.lr_start
|
| 34 |
+
self.last_lr = lr
|
| 35 |
+
return lr
|
| 36 |
+
else:
|
| 37 |
+
t = (n - self.lr_warm_up_steps) / (
|
| 38 |
+
self.lr_max_decay_steps - self.lr_warm_up_steps
|
| 39 |
+
)
|
| 40 |
+
t = min(t, 1.0)
|
| 41 |
+
lr = self.lr_min + 0.5 * (self.lr_max - self.lr_min) * (
|
| 42 |
+
1 + np.cos(t * np.pi)
|
| 43 |
+
)
|
| 44 |
+
self.last_lr = lr
|
| 45 |
+
return lr
|
| 46 |
+
|
| 47 |
+
def __call__(self, n, **kwargs):
|
| 48 |
+
return self.schedule(n, **kwargs)
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
class LambdaWarmUpCosineScheduler2:
|
| 52 |
+
"""
|
| 53 |
+
supports repeated iterations, configurable via lists
|
| 54 |
+
note: use with a base_lr of 1.0.
|
| 55 |
+
"""
|
| 56 |
+
|
| 57 |
+
def __init__(
|
| 58 |
+
self, warm_up_steps, f_min, f_max, f_start, cycle_lengths, verbosity_interval=0
|
| 59 |
+
):
|
| 60 |
+
assert (
|
| 61 |
+
len(warm_up_steps)
|
| 62 |
+
== len(f_min)
|
| 63 |
+
== len(f_max)
|
| 64 |
+
== len(f_start)
|
| 65 |
+
== len(cycle_lengths)
|
| 66 |
+
)
|
| 67 |
+
self.lr_warm_up_steps = warm_up_steps
|
| 68 |
+
self.f_start = f_start
|
| 69 |
+
self.f_min = f_min
|
| 70 |
+
self.f_max = f_max
|
| 71 |
+
self.cycle_lengths = cycle_lengths
|
| 72 |
+
self.cum_cycles = np.cumsum([0] + list(self.cycle_lengths))
|
| 73 |
+
self.last_f = 0.0
|
| 74 |
+
self.verbosity_interval = verbosity_interval
|
| 75 |
+
|
| 76 |
+
def find_in_interval(self, n):
|
| 77 |
+
interval = 0
|
| 78 |
+
for cl in self.cum_cycles[1:]:
|
| 79 |
+
if n <= cl:
|
| 80 |
+
return interval
|
| 81 |
+
interval += 1
|
| 82 |
+
|
| 83 |
+
def schedule(self, n, **kwargs):
|
| 84 |
+
cycle = self.find_in_interval(n)
|
| 85 |
+
n = n - self.cum_cycles[cycle]
|
| 86 |
+
if self.verbosity_interval > 0:
|
| 87 |
+
if n % self.verbosity_interval == 0:
|
| 88 |
+
print(
|
| 89 |
+
f"current step: {n}, recent lr-multiplier: {self.last_f}, "
|
| 90 |
+
f"current cycle {cycle}"
|
| 91 |
+
)
|
| 92 |
+
if n < self.lr_warm_up_steps[cycle]:
|
| 93 |
+
f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[
|
| 94 |
+
cycle
|
| 95 |
+
] * n + self.f_start[cycle]
|
| 96 |
+
self.last_f = f
|
| 97 |
+
return f
|
| 98 |
+
else:
|
| 99 |
+
t = (n - self.lr_warm_up_steps[cycle]) / (
|
| 100 |
+
self.cycle_lengths[cycle] - self.lr_warm_up_steps[cycle]
|
| 101 |
+
)
|
| 102 |
+
t = min(t, 1.0)
|
| 103 |
+
f = self.f_min[cycle] + 0.5 * (self.f_max[cycle] - self.f_min[cycle]) * (
|
| 104 |
+
1 + np.cos(t * np.pi)
|
| 105 |
+
)
|
| 106 |
+
self.last_f = f
|
| 107 |
+
return f
|
| 108 |
+
|
| 109 |
+
def __call__(self, n, **kwargs):
|
| 110 |
+
return self.schedule(n, **kwargs)
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
class LambdaLinearScheduler(LambdaWarmUpCosineScheduler2):
|
| 114 |
+
def schedule(self, n, **kwargs):
|
| 115 |
+
cycle = self.find_in_interval(n)
|
| 116 |
+
n = n - self.cum_cycles[cycle]
|
| 117 |
+
if self.verbosity_interval > 0:
|
| 118 |
+
if n % self.verbosity_interval == 0:
|
| 119 |
+
print(
|
| 120 |
+
f"current step: {n}, recent lr-multiplier: {self.last_f}, "
|
| 121 |
+
f"current cycle {cycle}"
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
if n < self.lr_warm_up_steps[cycle]:
|
| 125 |
+
f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[
|
| 126 |
+
cycle
|
| 127 |
+
] * n + self.f_start[cycle]
|
| 128 |
+
self.last_f = f
|
| 129 |
+
return f
|
| 130 |
+
else:
|
| 131 |
+
f = self.f_min[cycle] + (self.f_max[cycle] - self.f_min[cycle]) * (
|
| 132 |
+
self.cycle_lengths[cycle] - n
|
| 133 |
+
) / (self.cycle_lengths[cycle])
|
| 134 |
+
self.last_f = f
|
| 135 |
+
return f
|
sgm/util.py
ADDED
|
@@ -0,0 +1,248 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import functools
|
| 2 |
+
import importlib
|
| 3 |
+
import os
|
| 4 |
+
from functools import partial
|
| 5 |
+
from inspect import isfunction
|
| 6 |
+
|
| 7 |
+
import fsspec
|
| 8 |
+
import numpy as np
|
| 9 |
+
import torch
|
| 10 |
+
from PIL import Image, ImageDraw, ImageFont
|
| 11 |
+
from safetensors.torch import load_file as load_safetensors
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def disabled_train(self, mode=True):
|
| 15 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
| 16 |
+
does not change anymore."""
|
| 17 |
+
return self
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def get_string_from_tuple(s):
|
| 21 |
+
try:
|
| 22 |
+
# Check if the string starts and ends with parentheses
|
| 23 |
+
if s[0] == "(" and s[-1] == ")":
|
| 24 |
+
# Convert the string to a tuple
|
| 25 |
+
t = eval(s)
|
| 26 |
+
# Check if the type of t is tuple
|
| 27 |
+
if type(t) == tuple:
|
| 28 |
+
return t[0]
|
| 29 |
+
else:
|
| 30 |
+
pass
|
| 31 |
+
except:
|
| 32 |
+
pass
|
| 33 |
+
return s
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def is_power_of_two(n):
|
| 37 |
+
"""
|
| 38 |
+
chat.openai.com/chat
|
| 39 |
+
Return True if n is a power of 2, otherwise return False.
|
| 40 |
+
|
| 41 |
+
The function is_power_of_two takes an integer n as input and returns True if n is a power of 2, otherwise it returns False.
|
| 42 |
+
The function works by first checking if n is less than or equal to 0. If n is less than or equal to 0, it can't be a power of 2, so the function returns False.
|
| 43 |
+
If n is greater than 0, the function checks whether n is a power of 2 by using a bitwise AND operation between n and n-1. If n is a power of 2, then it will have only one bit set to 1 in its binary representation. When we subtract 1 from a power of 2, all the bits to the right of that bit become 1, and the bit itself becomes 0. So, when we perform a bitwise AND between n and n-1, we get 0 if n is a power of 2, and a non-zero value otherwise.
|
| 44 |
+
Thus, if the result of the bitwise AND operation is 0, then n is a power of 2 and the function returns True. Otherwise, the function returns False.
|
| 45 |
+
|
| 46 |
+
"""
|
| 47 |
+
if n <= 0:
|
| 48 |
+
return False
|
| 49 |
+
return (n & (n - 1)) == 0
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def autocast(f, enabled=True):
|
| 53 |
+
def do_autocast(*args, **kwargs):
|
| 54 |
+
with torch.cuda.amp.autocast(
|
| 55 |
+
enabled=enabled,
|
| 56 |
+
dtype=torch.get_autocast_gpu_dtype(),
|
| 57 |
+
cache_enabled=torch.is_autocast_cache_enabled(),
|
| 58 |
+
):
|
| 59 |
+
return f(*args, **kwargs)
|
| 60 |
+
|
| 61 |
+
return do_autocast
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
def load_partial_from_config(config):
|
| 65 |
+
return partial(get_obj_from_str(config["target"]), **config.get("params", dict()))
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def log_txt_as_img(wh, xc, size=10):
|
| 69 |
+
# wh a tuple of (width, height)
|
| 70 |
+
# xc a list of captions to plot
|
| 71 |
+
b = len(xc)
|
| 72 |
+
txts = list()
|
| 73 |
+
for bi in range(b):
|
| 74 |
+
txt = Image.new("RGB", wh, color="white")
|
| 75 |
+
draw = ImageDraw.Draw(txt)
|
| 76 |
+
font = ImageFont.truetype("data/DejaVuSans.ttf", size=size)
|
| 77 |
+
nc = int(40 * (wh[0] / 256))
|
| 78 |
+
if isinstance(xc[bi], list):
|
| 79 |
+
text_seq = xc[bi][0]
|
| 80 |
+
else:
|
| 81 |
+
text_seq = xc[bi]
|
| 82 |
+
lines = "\n".join(
|
| 83 |
+
text_seq[start : start + nc] for start in range(0, len(text_seq), nc)
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
try:
|
| 87 |
+
draw.text((0, 0), lines, fill="black", font=font)
|
| 88 |
+
except UnicodeEncodeError:
|
| 89 |
+
print("Cant encode string for logging. Skipping.")
|
| 90 |
+
|
| 91 |
+
txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0
|
| 92 |
+
txts.append(txt)
|
| 93 |
+
txts = np.stack(txts)
|
| 94 |
+
txts = torch.tensor(txts)
|
| 95 |
+
return txts
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def partialclass(cls, *args, **kwargs):
|
| 99 |
+
class NewCls(cls):
|
| 100 |
+
__init__ = functools.partialmethod(cls.__init__, *args, **kwargs)
|
| 101 |
+
|
| 102 |
+
return NewCls
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
def make_path_absolute(path):
|
| 106 |
+
fs, p = fsspec.core.url_to_fs(path)
|
| 107 |
+
if fs.protocol == "file":
|
| 108 |
+
return os.path.abspath(p)
|
| 109 |
+
return path
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
def ismap(x):
|
| 113 |
+
if not isinstance(x, torch.Tensor):
|
| 114 |
+
return False
|
| 115 |
+
return (len(x.shape) == 4) and (x.shape[1] > 3)
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
def isimage(x):
|
| 119 |
+
if not isinstance(x, torch.Tensor):
|
| 120 |
+
return False
|
| 121 |
+
return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1)
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
def isheatmap(x):
|
| 125 |
+
if not isinstance(x, torch.Tensor):
|
| 126 |
+
return False
|
| 127 |
+
|
| 128 |
+
return x.ndim == 2
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
def isneighbors(x):
|
| 132 |
+
if not isinstance(x, torch.Tensor):
|
| 133 |
+
return False
|
| 134 |
+
return x.ndim == 5 and (x.shape[2] == 3 or x.shape[2] == 1)
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
def exists(x):
|
| 138 |
+
return x is not None
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
def expand_dims_like(x, y):
|
| 142 |
+
while x.dim() != y.dim():
|
| 143 |
+
x = x.unsqueeze(-1)
|
| 144 |
+
return x
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
def default(val, d):
|
| 148 |
+
if exists(val):
|
| 149 |
+
return val
|
| 150 |
+
return d() if isfunction(d) else d
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
def mean_flat(tensor):
|
| 154 |
+
"""
|
| 155 |
+
https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86
|
| 156 |
+
Take the mean over all non-batch dimensions.
|
| 157 |
+
"""
|
| 158 |
+
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
def count_params(model, verbose=False):
|
| 162 |
+
total_params = sum(p.numel() for p in model.parameters())
|
| 163 |
+
if verbose:
|
| 164 |
+
print(f"{model.__class__.__name__} has {total_params * 1.e-6:.2f} M params.")
|
| 165 |
+
return total_params
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
def instantiate_from_config(config):
|
| 169 |
+
if not "target" in config:
|
| 170 |
+
if config == "__is_first_stage__":
|
| 171 |
+
return None
|
| 172 |
+
elif config == "__is_unconditional__":
|
| 173 |
+
return None
|
| 174 |
+
raise KeyError("Expected key `target` to instantiate.")
|
| 175 |
+
return get_obj_from_str(config["target"])(**config.get("params", dict()))
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
def get_obj_from_str(string, reload=False, invalidate_cache=True):
|
| 179 |
+
module, cls = string.rsplit(".", 1)
|
| 180 |
+
if invalidate_cache:
|
| 181 |
+
importlib.invalidate_caches()
|
| 182 |
+
if reload:
|
| 183 |
+
module_imp = importlib.import_module(module)
|
| 184 |
+
importlib.reload(module_imp)
|
| 185 |
+
return getattr(importlib.import_module(module, package=None), cls)
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
def append_zero(x):
|
| 189 |
+
return torch.cat([x, x.new_zeros([1])])
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
def append_dims(x, target_dims):
|
| 193 |
+
"""Appends dimensions to the end of a tensor until it has target_dims dimensions."""
|
| 194 |
+
dims_to_append = target_dims - x.ndim
|
| 195 |
+
if dims_to_append < 0:
|
| 196 |
+
raise ValueError(
|
| 197 |
+
f"input has {x.ndim} dims but target_dims is {target_dims}, which is less"
|
| 198 |
+
)
|
| 199 |
+
return x[(...,) + (None,) * dims_to_append]
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
def load_model_from_config(config, ckpt, verbose=True, freeze=True):
|
| 203 |
+
print(f"Loading model from {ckpt}")
|
| 204 |
+
if ckpt.endswith("ckpt"):
|
| 205 |
+
pl_sd = torch.load(ckpt, map_location="cpu")
|
| 206 |
+
if "global_step" in pl_sd:
|
| 207 |
+
print(f"Global Step: {pl_sd['global_step']}")
|
| 208 |
+
sd = pl_sd["state_dict"]
|
| 209 |
+
elif ckpt.endswith("safetensors"):
|
| 210 |
+
sd = load_safetensors(ckpt)
|
| 211 |
+
else:
|
| 212 |
+
raise NotImplementedError
|
| 213 |
+
|
| 214 |
+
model = instantiate_from_config(config.model)
|
| 215 |
+
|
| 216 |
+
m, u = model.load_state_dict(sd, strict=False)
|
| 217 |
+
|
| 218 |
+
if len(m) > 0 and verbose:
|
| 219 |
+
print("missing keys:")
|
| 220 |
+
print(m)
|
| 221 |
+
if len(u) > 0 and verbose:
|
| 222 |
+
print("unexpected keys:")
|
| 223 |
+
print(u)
|
| 224 |
+
|
| 225 |
+
if freeze:
|
| 226 |
+
for param in model.parameters():
|
| 227 |
+
param.requires_grad = False
|
| 228 |
+
|
| 229 |
+
model.eval()
|
| 230 |
+
return model
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
def get_configs_path() -> str:
|
| 234 |
+
"""
|
| 235 |
+
Get the `configs` directory.
|
| 236 |
+
For a working copy, this is the one in the root of the repository,
|
| 237 |
+
but for an installed copy, it's in the `sgm` package (see pyproject.toml).
|
| 238 |
+
"""
|
| 239 |
+
this_dir = os.path.dirname(__file__)
|
| 240 |
+
candidates = (
|
| 241 |
+
os.path.join(this_dir, "configs"),
|
| 242 |
+
os.path.join(this_dir, "..", "configs"),
|
| 243 |
+
)
|
| 244 |
+
for candidate in candidates:
|
| 245 |
+
candidate = os.path.abspath(candidate)
|
| 246 |
+
if os.path.isdir(candidate):
|
| 247 |
+
return candidate
|
| 248 |
+
raise FileNotFoundError(f"Could not find SGM configs in {candidates}")
|