Spaces:
Paused
Paused
Upload models/transformer2d.py
Browse files- models/transformer2d.py +229 -0
models/transformer2d.py
ADDED
|
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn.functional as F
|
| 3 |
+
from torch import nn
|
| 4 |
+
import copy, math
|
| 5 |
+
from models.position_encoding import build_position_encoding
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class TransformerEncoder(nn.Module):
|
| 9 |
+
|
| 10 |
+
def __init__(self, enc_layer, num_layers, use_dense_pos=False):
|
| 11 |
+
super().__init__()
|
| 12 |
+
self.layers = nn.ModuleList([copy.deepcopy(enc_layer) for i in range(num_layers)])
|
| 13 |
+
self.num_layers = num_layers
|
| 14 |
+
self.use_dense_pos = use_dense_pos
|
| 15 |
+
|
| 16 |
+
def forward(self, src, pos, padding_mask=None):
|
| 17 |
+
if self.use_dense_pos:
|
| 18 |
+
## pos encoding at each MH-Attention block (q,k)
|
| 19 |
+
output, pos_enc = src, pos
|
| 20 |
+
for layer in self.layers:
|
| 21 |
+
output, att_map = layer(output, pos_enc, padding_mask)
|
| 22 |
+
else:
|
| 23 |
+
## pos encoding at input only (q,k,v)
|
| 24 |
+
output, pos_enc = src + pos, None
|
| 25 |
+
for layer in self.layers:
|
| 26 |
+
output, att_map = layer(output, pos_enc, padding_mask)
|
| 27 |
+
return output, att_map
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
class EncoderLayer(nn.Module):
|
| 31 |
+
|
| 32 |
+
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu",
|
| 33 |
+
use_dense_pos=False):
|
| 34 |
+
super().__init__()
|
| 35 |
+
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
|
| 36 |
+
# Implementation of Feedforward model
|
| 37 |
+
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
| 38 |
+
self.dropout = nn.Dropout(dropout)
|
| 39 |
+
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
| 40 |
+
|
| 41 |
+
self.norm1 = nn.LayerNorm(d_model)
|
| 42 |
+
self.norm2 = nn.LayerNorm(d_model)
|
| 43 |
+
self.dropout1 = nn.Dropout(dropout)
|
| 44 |
+
self.dropout2 = nn.Dropout(dropout)
|
| 45 |
+
|
| 46 |
+
self.activation = _get_activation_fn(activation)
|
| 47 |
+
|
| 48 |
+
def with_pos_embed(self, tensor, pos):
|
| 49 |
+
return tensor if pos is None else tensor + pos
|
| 50 |
+
|
| 51 |
+
def forward(self, src, pos, padding_mask):
|
| 52 |
+
q = k = self.with_pos_embed(src, pos)
|
| 53 |
+
src2, attn = self.self_attn(q, k, value=src, key_padding_mask=padding_mask)
|
| 54 |
+
src = src + self.dropout1(src2)
|
| 55 |
+
src = self.norm1(src)
|
| 56 |
+
src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
|
| 57 |
+
src = src + self.dropout2(src2)
|
| 58 |
+
src = self.norm2(src)
|
| 59 |
+
return src, attn
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
class TransformerDecoder(nn.Module):
|
| 63 |
+
|
| 64 |
+
def __init__(self, dec_layer, num_layers, use_dense_pos=False, return_intermediate=False):
|
| 65 |
+
super().__init__()
|
| 66 |
+
self.layers = nn.ModuleList([copy.deepcopy(dec_layer) for i in range(num_layers)])
|
| 67 |
+
self.num_layers = num_layers
|
| 68 |
+
self.use_dense_pos = use_dense_pos
|
| 69 |
+
self.return_intermediate = return_intermediate
|
| 70 |
+
|
| 71 |
+
def forward(self, tgt, tgt_pos, memory, memory_pos,
|
| 72 |
+
tgt_padding_mask, src_padding_mask, tgt_attn_mask=None):
|
| 73 |
+
intermediate = []
|
| 74 |
+
if self.use_dense_pos:
|
| 75 |
+
## pos encoding at each MH-Attention block (q,k)
|
| 76 |
+
output = tgt
|
| 77 |
+
tgt_pos_enc, memory_pos_enc = tgt_pos, memory_pos
|
| 78 |
+
for layer in self.layers:
|
| 79 |
+
output, att_map = layer(output, tgt_pos_enc, memory, memory_pos_enc,
|
| 80 |
+
tgt_padding_mask, src_padding_mask, tgt_attn_mask)
|
| 81 |
+
if self.return_intermediate:
|
| 82 |
+
intermediate.append(output)
|
| 83 |
+
else:
|
| 84 |
+
## pos encoding at input only (q,k,v)
|
| 85 |
+
output = tgt + tgt_pos
|
| 86 |
+
tgt_pos_enc, memory_pos_enc = None, None
|
| 87 |
+
for layer in self.layers:
|
| 88 |
+
output, att_map = layer(output, tgt_pos_enc, memory, memory_pos_enc,
|
| 89 |
+
tgt_padding_mask, src_padding_mask, tgt_attn_mask)
|
| 90 |
+
if self.return_intermediate:
|
| 91 |
+
intermediate.append(output)
|
| 92 |
+
|
| 93 |
+
if self.return_intermediate:
|
| 94 |
+
return torch.stack(intermediate)
|
| 95 |
+
return output, att_map
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
class DecoderLayer(nn.Module):
|
| 99 |
+
|
| 100 |
+
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu",
|
| 101 |
+
use_dense_pos=False):
|
| 102 |
+
super().__init__()
|
| 103 |
+
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
|
| 104 |
+
self.corr_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
|
| 105 |
+
# Implementation of Feedforward model
|
| 106 |
+
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
| 107 |
+
self.dropout = nn.Dropout(dropout)
|
| 108 |
+
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
| 109 |
+
|
| 110 |
+
self.norm1 = nn.LayerNorm(d_model)
|
| 111 |
+
self.norm2 = nn.LayerNorm(d_model)
|
| 112 |
+
self.norm3 = nn.LayerNorm(d_model)
|
| 113 |
+
self.dropout1 = nn.Dropout(dropout)
|
| 114 |
+
self.dropout2 = nn.Dropout(dropout)
|
| 115 |
+
self.dropout3 = nn.Dropout(dropout)
|
| 116 |
+
|
| 117 |
+
self.activation = _get_activation_fn(activation)
|
| 118 |
+
|
| 119 |
+
def with_pos_embed(self, tensor, pos):
|
| 120 |
+
return tensor if pos is None else tensor + pos
|
| 121 |
+
|
| 122 |
+
def forward(self, tgt, tgt_pos, memory, memory_pos,
|
| 123 |
+
tgt_padding_mask, memory_padding_mask, tgt_attn_mask):
|
| 124 |
+
q = k = self.with_pos_embed(tgt, tgt_pos)
|
| 125 |
+
tgt2, attn = self.self_attn(q, k, value=tgt, key_padding_mask=tgt_padding_mask,
|
| 126 |
+
attn_mask=tgt_attn_mask)
|
| 127 |
+
tgt = tgt + self.dropout1(tgt2)
|
| 128 |
+
tgt = self.norm1(tgt)
|
| 129 |
+
tgt2, attn = self.corr_attn(query=self.with_pos_embed(tgt, tgt_pos),
|
| 130 |
+
key=self.with_pos_embed(memory, memory_pos),
|
| 131 |
+
value=memory, key_padding_mask=memory_padding_mask)
|
| 132 |
+
tgt = tgt + self.dropout2(tgt2)
|
| 133 |
+
tgt = self.norm2(tgt)
|
| 134 |
+
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
|
| 135 |
+
tgt = tgt + self.dropout3(tgt2)
|
| 136 |
+
tgt = self.norm3(tgt)
|
| 137 |
+
return tgt, attn
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
def _get_activation_fn(activation):
|
| 141 |
+
"""Return an activation function given a string"""
|
| 142 |
+
if activation == "relu":
|
| 143 |
+
return F.relu
|
| 144 |
+
if activation == "gelu":
|
| 145 |
+
return F.gelu
|
| 146 |
+
if activation == "glu":
|
| 147 |
+
return F.glu
|
| 148 |
+
raise RuntimeError(F"activation should be relu/gelu, not {activation}.")
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
#-----------------------------------------------------------------------------------
|
| 153 |
+
'''
|
| 154 |
+
copy from the implementatoin of "attention-is-all-you-need-pytorch-master" by Yu-Hsiang Huang
|
| 155 |
+
'''
|
| 156 |
+
|
| 157 |
+
class MultiHeadAttention(nn.Module):
|
| 158 |
+
''' Multi-Head Attention module '''
|
| 159 |
+
|
| 160 |
+
def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1):
|
| 161 |
+
super().__init__()
|
| 162 |
+
|
| 163 |
+
self.n_head = n_head
|
| 164 |
+
self.d_k = d_k
|
| 165 |
+
self.d_v = d_v
|
| 166 |
+
|
| 167 |
+
self.w_qs = nn.Linear(d_model, n_head * d_k, bias=False)
|
| 168 |
+
self.w_ks = nn.Linear(d_model, n_head * d_k, bias=False)
|
| 169 |
+
self.w_vs = nn.Linear(d_model, n_head * d_v, bias=False)
|
| 170 |
+
self.fc = nn.Linear(n_head * d_v, d_model, bias=False)
|
| 171 |
+
|
| 172 |
+
self.attention = ScaledDotProductAttention(temperature=d_k ** 0.5)
|
| 173 |
+
|
| 174 |
+
self.dropout = nn.Dropout(dropout)
|
| 175 |
+
self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
def forward(self, q, k, v, mask=None):
|
| 179 |
+
|
| 180 |
+
d_k, d_v, n_head = self.d_k, self.d_v, self.n_head
|
| 181 |
+
sz_b, len_q, len_k, len_v = q.size(0), q.size(1), k.size(1), v.size(1)
|
| 182 |
+
|
| 183 |
+
residual = q
|
| 184 |
+
|
| 185 |
+
# Pass through the pre-attention projection: b x lq x (n*dv)
|
| 186 |
+
# Separate different heads: b x lq x n x dv
|
| 187 |
+
q = self.w_qs(q).view(sz_b, len_q, n_head, d_k)
|
| 188 |
+
k = self.w_ks(k).view(sz_b, len_k, n_head, d_k)
|
| 189 |
+
v = self.w_vs(v).view(sz_b, len_v, n_head, d_v)
|
| 190 |
+
|
| 191 |
+
# Transpose for attention dot product: b x n x lq x dv
|
| 192 |
+
q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)
|
| 193 |
+
|
| 194 |
+
if mask is not None:
|
| 195 |
+
mask = mask.unsqueeze(1) # For head axis broadcasting.
|
| 196 |
+
|
| 197 |
+
q, attn = self.attention(q, k, v, mask=mask)
|
| 198 |
+
|
| 199 |
+
# Transpose to move the head dimension back: b x lq x n x dv
|
| 200 |
+
# Combine the last two dimensions to concatenate all the heads together: b x lq x (n*dv)
|
| 201 |
+
q = q.transpose(1, 2).contiguous().view(sz_b, len_q, -1)
|
| 202 |
+
q = self.dropout(self.fc(q))
|
| 203 |
+
q += residual
|
| 204 |
+
|
| 205 |
+
q = self.layer_norm(q)
|
| 206 |
+
|
| 207 |
+
return q, attn
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
class ScaledDotProductAttention(nn.Module):
|
| 212 |
+
''' Scaled Dot-Product Attention '''
|
| 213 |
+
|
| 214 |
+
def __init__(self, temperature, attn_dropout=0.1):
|
| 215 |
+
super().__init__()
|
| 216 |
+
self.temperature = temperature
|
| 217 |
+
self.dropout = nn.Dropout(attn_dropout)
|
| 218 |
+
|
| 219 |
+
def forward(self, q, k, v, mask=None):
|
| 220 |
+
|
| 221 |
+
attn = torch.matmul(q / self.temperature, k.transpose(2, 3))
|
| 222 |
+
|
| 223 |
+
if mask is not None:
|
| 224 |
+
attn = attn.masked_fill(mask == 0, -1e9)
|
| 225 |
+
|
| 226 |
+
attn = self.dropout(F.softmax(attn, dim=-1))
|
| 227 |
+
output = torch.matmul(attn, v)
|
| 228 |
+
|
| 229 |
+
return output, attn
|