File size: 13,630 Bytes
f43f2d3 41d3a30 f43f2d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
"""
Contains the prompt templates for interacting with the Gemini LLM.
Separating prompts from the application logic makes them easier to manage,
modify, and version. This module provides functions that return the formatted
prompt strings required by the data processing module.
"""
import datetime
import json
from solr_metadata import format_metadata_for_prompt
def get_analysis_plan_prompt(natural_language_query, chat_history):
"""
Generates the prompt for creating a Solr analysis plan from a user query.
"""
formatted_field_info = format_metadata_for_prompt()
formatted_history = ""
for user_msg, bot_msg in chat_history:
if user_msg:
formatted_history += f"- User: \"{user_msg}\"\n"
return f"""
You are an expert data analyst and Solr query engineer. Your task is to convert a natural language question into a structured JSON "Analysis Plan". This plan will be used to run two separate, efficient queries: one for aggregate data (facets) and one for finding illustrative examples (grouping).
---
### CONTEXT & RULES
1. **Today's Date for Calculations**: {datetime.datetime.now().date().strftime("%Y-%m-%d")}
2. **Field Usage**: You MUST use the fields described in the 'Field Definitions'. Pay close attention to the definitions to select the correct field, especially the `_s` fields for searching. Do not use fields ending with `_s` in `group.field` or facet `field` unless necessary for the analysis.
3. **Dimension vs. Measure**:
* `analysis_dimension`: The primary categorical field the user wants to group by (e.g., `company_name`, `route_branch`). This is the `group by` field.
* `analysis_measure`: The metric to aggregate (e.g., `sum(total_deal_value_in_million)`) or the method of counting (`count`).
* `sort_field_for_examples`: The raw field used to find the "best" example. If `analysis_measure` is `sum(field)`, this should be `field`. If `analysis_measure` is `count`, this should be a relevant field like `date`.
4. **Crucial Sorting Rules**:
* For `group.sort`: If `analysis_measure` involves a function on a field (e.g., `sum(total_deal_value_in_million)`), you MUST use the full function: `group.sort: 'sum(total_deal_value_in_million) desc'`.
* If `analysis_measure` is 'count', you MUST OMIT the `group.sort` parameter entirely.
* For sorting, NEVER use 'date_year' directly for `sort` in `terms` facets; use 'index asc' or 'index desc' instead. For other sorts, use 'date'.
5. **Output Format**: Your final output must be a single, raw JSON object. Do not add comments or markdown formatting.
---
### FIELD DEFINITIONS (Your Source of Truth)
{formatted_field_info}
---
### CHAT HISTORY
{formatted_history}
---
### EXAMPLES
**User Query 1:** "What are the top 5 companies by total deal value in 2023?"
**Correct JSON Output 1:**
```json
{{
"analysis_dimension": "company_name",
"analysis_measure": "sum(total_deal_value_in_million)",
"sort_field_for_examples": "total_deal_value_in_million",
"query_filter": "date_year:2023 AND total_deal_value_in_million:[0 TO *]",
"quantitative_request": {{
"json.facet": {{
"companies_by_deal_value": {{
"type": "terms",
"field": "company_name",
"limit": 5,
"sort": "total_value desc",
"facet": {{
"total_value": "sum(total_deal_value_in_million)"
}}
}}
}}
}},
"qualitative_request": {{
"group": true,
"group.field": "company_name",
"group.limit": 1,
"group.sort": "sum(total_deal_value_in_million) desc",
"sort": "total_deal_value_in_million desc"
}}
}}
```
**User Query 2:** "What are the most common news types for infections this year?"
**Correct JSON Output 2:**
```json
{{
"analysis_dimension": "news_type",
"analysis_measure": "count",
"sort_field_for_examples": "date",
"query_filter": "therapeutic_category_s:infections AND date_year:{datetime.datetime.now().year}",
"quantitative_request": {{
"json.facet": {{
"news_by_type": {{
"type": "terms",
"field": "news_type",
"limit": 10,
"sort": "count desc"
}}
}}
}},
"qualitative_request": {{
"group": true,
"group.field": "news_type",
"group.limit": 1,
"sort": "date desc"
}}
}}
```
---
### YOUR TASK
Convert the following user query into a single, raw JSON "Analysis Plan" object, strictly following all rules and considering the chat history.
**Current User Query:** `{natural_language_query}`
"""
def get_synthesis_report_prompt(query, quantitative_data, qualitative_data, plan):
"""
Generates the prompt for synthesizing a final report from the query results.
"""
qualitative_prompt_str = ""
dimension = plan.get('analysis_dimension', 'N/A')
if qualitative_data and dimension in qualitative_data:
for group in qualitative_data.get(dimension, {}).get('groups', []):
group_value = group.get('groupValue', 'N/A')
if group.get('doclist', {}).get('docs'):
doc = group.get('doclist', {}).get('docs', [{}])[0]
title = doc.get('abstract', ['No Title'])
content_list = doc.get('content', [])
content_snip = (' '.join(content_list[0].split()[:40]) + '...') if content_list else 'No content available.'
metric_val_raw = doc.get(plan.get('sort_field_for_examples'), 'N/A')
metric_val = metric_val_raw[0] if isinstance(metric_val_raw, list) else metric_val_raw
qualitative_prompt_str += f"- **For category `{group_value}`:**\n"
qualitative_prompt_str += f" - **Top Example Title:** {title}\n"
qualitative_prompt_str += f" - **Metric Value:** {metric_val}\n"
qualitative_prompt_str += f" - **Content Snippet:** {content_snip}\n\n"
return f"""
You are a top-tier business intelligence analyst. Your task is to write an insightful, data-driven report for an executive. You must synthesize quantitative data (the 'what') with qualitative examples (the 'why') to tell a complete story.
---
### AVAILABLE INFORMATION
**1. The User's Core Question:**
\"{query}\"
**2. Quantitative Data (The 'What'):**
This data shows the high-level aggregates.
```json
{json.dumps(quantitative_data, indent=2)}
```
**3. Qualitative Data (The 'Why'):
These are the single most significant documents driving the numbers for each category.
{qualitative_prompt_str}
---
### REPORTING INSTRUCTIONS
Your report must be in clean, professional Markdown and follow this structure precisely.
**Report Structure:**
`## Executive Summary`
- A 1-2 sentence, top-line answer to the user's question based on the quantitative data.
`### Key Findings`
- Use bullet points to highlight the main figures from the quantitative data. Interpret the numbers.
`### Key Drivers & Illustrative Examples`
- **This is the most important section.** Explain the "so what?" behind the numbers.
- Use the qualitative examples to explain *why* a category is high or low. Reference the top example document for each main category.
`### Deeper Dive: Suggested Follow-up Analyses`
- Propose 2-3 logical next questions based on your analysis to uncover deeper trends.
---
**Generate the full report now, paying close attention to all formatting and spacing rules.**
"""
def get_visualization_code_prompt(query_context, facet_data):
"""
Generates the prompt for creating Python visualization code.
"""
return f"""
You are a Python Data Visualization expert specializing in Matplotlib and Seaborn.
Your task is to generate robust, error-free Python code to create a single, insightful visualization based on the user's query and the provided Solr facet data.
**User's Analytical Goal:**
\"{query_context}\"
**Aggregated Data (from Solr Facets):**
```json
{json.dumps(facet_data, indent=2)}
```
---
### **CRITICAL INSTRUCTIONS: CODE GENERATION RULES**
You MUST follow these rules to avoid errors.
**1. Identify the Data Structure FIRST:**
Before writing any code, analyze the `facet_data` JSON to determine its structure. There are three common patterns. Choose the correct template below.
* **Pattern A: Simple `terms` Facet.** The JSON has ONE main key (besides "count") which contains a list of "buckets". Each bucket has a "val" and a "count". Use this for standard bar charts.
* **Pattern B: Multiple `query` Facets.** The JSON has MULTIPLE keys (besides "count"), and each key is an object containing metrics like "count" or "sum(...)". Use this for comparing a few distinct items (e.g., "oral vs injection").
* **Pattern C: Nested `terms` Facet.** The JSON has one main key with a list of "buckets", but inside EACH bucket, there are nested metric objects. This is used for grouped comparisons (e.g., "compare 2024 vs 2025 across categories"). This almost always requires `pandas`.
**2. Use the Correct Parsing Template:**
---
**TEMPLATE FOR PATTERN A (Simple Bar Chart from `terms` facet):**
```python
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
plt.style.use('seaborn-v0_8-whitegrid')
fig, ax = plt.subplots(figsize=(12, 8))
# Dynamically find the main facet key (the one with 'buckets')
facet_key = None
for key, value in facet_data.items():
if isinstance(value, dict) and 'buckets' in value:
facet_key = key
break
if facet_key:
buckets = facet_data[facet_key].get('buckets', [])
# Check if buckets contain data
if buckets:
df = pd.DataFrame(buckets)
# Check for a nested metric or use 'count'
if 'total_deal_value' in df.columns and pd.api.types.is_dict_like(df['total_deal_value'].iloc):
# Example for nested sum metric
df['value'] = df['total_deal_value'].apply(lambda x: x.get('sum', 0))
y_axis_label = 'Sum of Total Deal Value'
else:
df.rename(columns={{'count': 'value'}}, inplace=True)
y_axis_label = 'Count'
sns.barplot(data=df, x='val', y='value', ax=ax, palette='viridis')
ax.set_xlabel('Category')
ax.set_ylabel(y_axis_label)
else:
ax.text(0.5, 0.5, 'No data in buckets to plot.', ha='center')
ax.set_title('Your Insightful Title Here')
# Correct way to rotate labels to prevent errors
plt.setp(ax.get_xticklabels(), rotation=45, ha="right", rotation_mode="anchor")
plt.tight_layout()
```
---
**TEMPLATE FOR PATTERN B (Comparison Bar Chart from `query` facets):**
```python
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
plt.style.use('seaborn-v0_8-whitegrid')
fig, ax = plt.subplots(figsize=(10, 6))
labels = []
values = []
# Iterate through top-level keys, skipping the 'count'
for key, data_dict in facet_data.items():
if key == 'count' or not isinstance(data_dict, dict):
continue
# Extract the label (e.g., 'oral_deals' -> 'Oral')
label = key.replace('_deals', '').replace('_', ' ').title()
# Find the metric value, which is NOT 'count'
metric_value = 0
for sub_key, sub_value in data_dict.items():
if sub_key != 'count':
metric_value = sub_value
break # Found the metric
labels.append(label)
values.append(metric_value)
if labels:
sns.barplot(x=labels, y=values, ax=ax, palette='mako')
ax.set_ylabel('Total Deal Value') # Or other metric name
ax.set_xlabel('Category')
else:
ax.text(0.5, 0.5, 'No query facet data to plot.', ha='center')
ax.set_title('Your Insightful Title Here')
plt.tight_layout()
```
---
**TEMPLATE FOR PATTERN C (Grouped Bar Chart from nested `terms` facet):**
```python
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
plt.style.use('seaborn-v0_8-whitegrid')
fig, ax = plt.subplots(figsize=(14, 8))
# Find the key that has the buckets
facet_key = None
for key, value in facet_data.items():
if isinstance(value, dict) and 'buckets' in value:
facet_key = key
break
if facet_key and facet_data[facet_key].get('buckets'):
# This list comprehension is robust for parsing nested metrics
plot_data = []
for bucket in facet_data[facet_key]['buckets']:
category = bucket['val']
# Find all nested metrics (e.g., total_deal_value_2025)
for sub_key, sub_value in bucket.items():
if isinstance(sub_value, dict) and 'sum' in sub_value:
# Extracts year from 'total_deal_value_2025' -> '2025'
year = sub_key.split('_')[-1]
value = sub_value['sum']
plot_data.append({{'Category': category, 'Year': year, 'Value': value}})
if plot_data:
df = pd.DataFrame(plot_data)
sns.barplot(data=df, x='Category', y='Value', hue='Year', ax=ax)
ax.set_ylabel('Total Deal Value')
ax.set_xlabel('Business Model')
# Correct way to rotate labels to prevent errors
plt.setp(ax.get_xticklabels(), rotation=45, ha="right", rotation_mode="anchor")
else:
ax.text(0.5, 0.5, 'No nested data found to plot.', ha='center')
else:
ax.text(0.5, 0.5, 'No data in buckets to plot.', ha='center')
ax.set_title('Your Insightful Title Here')
plt.tight_layout()
```
---
**3. Final Code Generation:**
- **DO NOT** include `plt.show()`.
- **DO** set a dynamic and descriptive `ax.set_title()`, `ax.set_xlabel()`, and `ax.set_ylabel()`.
- **DO NOT** wrap the code in ```python ... ```. Output only the raw Python code.
- Adapt the chosen template to the specific keys and metrics in the provided `facet_data`.
**Your Task:**
Now, generate the Python code.
"""
|