File size: 10,513 Bytes
f43f2d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f74c067
 
f43f2d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f74c067
 
f43f2d3
 
 
 
f74c067
f43f2d3
 
 
f74c067
 
 
 
 
 
 
 
 
 
 
f43f2d3
 
 
f74c067
f43f2d3
 
 
 
 
 
 
 
 
 
f74c067
f43f2d3
 
f74c067
f43f2d3
f74c067
f43f2d3
 
 
 
 
 
 
 
 
 
f74c067
f43f2d3
 
f74c067
f43f2d3
 
 
f74c067
f43f2d3
 
f74c067
f43f2d3
f74c067
f43f2d3
 
 
 
 
 
 
f74c067
f43f2d3
 
 
 
 
 
 
 
 
f74c067
f43f2d3
 
 
 
 
f74c067
f43f2d3
 
 
 
 
 
 
 
 
 
 
f74c067
f43f2d3
 
 
 
 
 
f74c067
f43f2d3
 
 
 
 
 
 
 
 
 
f74c067
f43f2d3
 
 
f74c067
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
"""
Defines the Gradio user interface and manages the application's state
and event handling.

This module is responsible for the presentation layer of the application.
It creates the interactive components and orchestrates the analysis workflow
by calling functions from the data_processing module.
"""


import gradio as gr
import json
import concurrent.futures
from data_processing import (
    llm_generate_analysis_plan_with_history,
    execute_quantitative_query,
    execute_qualitative_query,
    llm_synthesize_enriched_report_stream,
    llm_generate_visualization_code,
    execute_viz_code_and_get_path,
    parse_suggestions_from_report
)

def create_ui(llm_model, solr_client):
    """
    Builds the Gradio UI and wires up all the event handlers.

    Args:
        llm_model: The initialized Google Gemini model client.
        solr_client: The initialized pysolr client.
    """
    with gr.Blocks(theme=gr.themes.Soft(), css="footer {display: none !important}") as demo:
        state = gr.State()

        with gr.Row():
            with gr.Column(scale=4):
                gr.Markdown("# PharmaCircle AI Data Analyst")
            with gr.Column(scale=1):
                clear_button = gr.Button("πŸ”„ Start New Analysis", variant="primary")

        gr.Markdown("Ask a question to begin your analysis. I will generate an analysis plan, retrieve quantitative and qualitative data, create a visualization, and write an enriched report.")

        with gr.Row():
            with gr.Column(scale=1):
                chatbot = gr.Chatbot(label="Analysis Chat Log", height=700, show_copy_button=True)
                msg_textbox = gr.Textbox(placeholder="Ask a question, e.g., 'Show me the top 5 companies by total deal value in 2023'", label="Your Question", interactive=True)

            with gr.Column(scale=2):
                with gr.Accordion("Dynamic Field Suggestions", open=False):
                    suggestions_display = gr.Markdown("Suggestions from the external API will appear here...", visible=True)
                with gr.Accordion("Generated Analysis Plan", open=False):
                    plan_display = gr.Markdown("Plan will appear here...", visible=True)
                with gr.Accordion("Retrieved Quantitative Data", open=False):
                    quantitative_data_display = gr.Markdown("Aggregate data will appear here...", visible=False)
                with gr.Accordion("Retrieved Qualitative Data (Examples)", open=False):
                    qualitative_data_display = gr.Markdown("Example data will appear here...", visible=False)
                plot_display = gr.Image(label="Visualization", type="filepath", visible=False)
                report_display = gr.Markdown("Report will be streamed here...", visible=False)

        def process_analysis_flow(user_input, history, state):
            """
            Manages the conversation and yields UI updates.
            """
            if state is None:
                state = {'query_count': 0, 'last_suggestions': []}
            if history is None:
                history = []

            # Reset all displays at the beginning of a new flow
            yield (history, state, gr.update(value=None, visible=False), gr.update(value=None, visible=False), gr.update(value=None, visible=False), gr.update(value=None, visible=False), gr.update(value=None, visible=False), gr.update(value="Suggestions from the external API will appear here...", visible=False))

            query_context = user_input.strip()
            if not query_context:
                history.append((user_input, "Please enter a question to analyze."))
                yield (history, state, None, None, None, None, None, None)
                return

            history.append((user_input, f"Analyzing: '{query_context}'\n\n*Generating analysis plan...*"))
            yield (history, state, None, None, None, None, None, None)

            # Generate plan and get search field suggestions
            analysis_plan, search_fields = llm_generate_analysis_plan_with_history(llm_model, query_context, history)

            # Update and display search field suggestions in its own accordion
            if search_fields:
                suggestions_md = "**External API Suggestions:**\n" + "\n".join([f"- `{field['field_name']}`: `{field['field_value']}`" for field in search_fields])
                suggestions_display_update = gr.update(value=suggestions_md, visible=True)
            else:
                suggestions_display_update = gr.update(value="No suggestions were returned from the external API.", visible=True)

            if not analysis_plan:
                history.append((None, "I'm sorry, I couldn't generate a valid analysis plan. Please try rephrasing."))
                yield (history, state, None, None, None, None, None, suggestions_display_update)
                return

            history.append((None, "βœ… Analysis plan generated!"))
            plan_summary = f"""
*   **Analysis Dimension:** `{analysis_plan.get('analysis_dimension')}`
*   **Analysis Measure:** `{analysis_plan.get('analysis_measure')}`
*   **Query Filter:** `{analysis_plan.get('query_filter')}`
"""
            history.append((None, plan_summary))
            formatted_plan = f"**Full Analysis Plan:**\n```json\n{json.dumps(analysis_plan, indent=2)}\n```"
            yield (history, state, None, None, gr.update(value=formatted_plan, visible=True), None, None, suggestions_display_update)

            history.append((None, "*Executing queries for aggregates and examples...*"))
            yield (history, state, None, None, gr.update(value=formatted_plan, visible=True), None, None, suggestions_display_update)

            # Execute queries in parallel
            aggregate_data = None
            example_data = None
            with concurrent.futures.ThreadPoolExecutor() as executor:
                future_agg = executor.submit(execute_quantitative_query, solr_client, analysis_plan)
                future_ex = executor.submit(execute_qualitative_query, solr_client, analysis_plan)
                aggregate_data = future_agg.result()
                example_data = future_ex.result()

            if not aggregate_data or aggregate_data.get('count', 0) == 0:
                history.append((None, "No data was found for your query. Please try a different question."))
                yield (history, state, None, None, gr.update(value=formatted_plan, visible=True), None, None, suggestions_display_update)
                return

            # Display retrieved data
            formatted_agg_data = f"**Quantitative (Aggregate) Data:**\n```json\n{json.dumps(aggregate_data, indent=2)}\n```"
            formatted_qual_data = f"**Qualitative (Example) Data:**\n```json\n{json.dumps(example_data, indent=2)}\n```"
            qual_data_display_update = gr.update(value=formatted_qual_data, visible=True)
            yield (history, state, None, None, gr.update(value=formatted_plan, visible=True), gr.update(value=formatted_agg_data, visible=True), qual_data_display_update, suggestions_display_update)

            history.append((None, "βœ… Data retrieved. Generating visualization and final report..."))
            yield (history, state, None, None, gr.update(value=formatted_plan, visible=True), gr.update(value=formatted_agg_data, visible=True), qual_data_display_update, suggestions_display_update)

            # Generate viz and report
            with concurrent.futures.ThreadPoolExecutor() as executor:
                viz_future = executor.submit(llm_generate_visualization_code, llm_model, query_context, aggregate_data)

                report_text = ""
                stream_history = history[:]
                for chunk in llm_synthesize_enriched_report_stream(llm_model, query_context, aggregate_data, example_data, analysis_plan):
                    report_text += chunk
                    yield (stream_history, state, None, gr.update(value=report_text, visible=True), gr.update(value=formatted_plan, visible=True), gr.update(value=formatted_agg_data, visible=True), qual_data_display_update, suggestions_display_update)

                history.append((None, report_text))

                viz_code = viz_future.result()
                plot_path = execute_viz_code_and_get_path(viz_code, aggregate_data)
                output_plot = gr.update(value=plot_path, visible=True) if plot_path else gr.update(visible=False)
                if not plot_path:
                    history.append((None, "*I was unable to generate a plot for this data.*\n"))

                yield (history, state, output_plot, gr.update(value=report_text), gr.update(value=formatted_plan, visible=True), gr.update(value=formatted_agg_data, visible=True), qual_data_display_update, suggestions_display_update)

            state['query_count'] += 1
            state['last_suggestions'] = parse_suggestions_from_report(report_text)
            next_prompt = "Analysis complete. What would you like to explore next?"
            history.append((None, next_prompt))
            yield (history, state, output_plot, gr.update(value=report_text), gr.update(value=formatted_plan, visible=True), gr.update(value=formatted_agg_data, visible=True), qual_data_display_update, suggestions_display_update)

        def reset_all():
            """Resets the entire UI for a new analysis session."""
            return (
                [],
                None,
                "",
                gr.update(value=None, visible=False),
                gr.update(value=None, visible=False),
                gr.update(value=None, visible=False),
                gr.update(value=None, visible=False),
                gr.update(value=None, visible=False),
                gr.update(value=None, visible=False)
            )

        msg_textbox.submit(
            fn=process_analysis_flow,
            inputs=[msg_textbox, chatbot, state],
            outputs=[chatbot, state, plot_display, report_display, plan_display, quantitative_data_display, qualitative_data_display, suggestions_display],
        ).then(
            lambda: gr.update(value=""),
            None,
            [msg_textbox],
            queue=False,
        )

        clear_button.click(
            fn=reset_all,
            inputs=None,
            outputs=[chatbot, state, msg_textbox, plot_display, report_display, plan_display, quantitative_data_display, qualitative_data_display, suggestions_display],
            queue=False
        )

    return demo