pc-ai-data-analyst-v2 / llm_prompts.py
dolphinium
feat: Integrate dynamic field suggestions from external API into analysis plan generation and UI
f74c067
raw
history blame
14.7 kB
"""
Contains the prompt templates for interacting with the Gemini LLM.
Separating prompts from the application logic makes them easier to manage,
modify, and version. This module provides functions that return the formatted
prompt strings required by the data processing module.
"""
import datetime
import json
from solr_metadata import format_metadata_for_prompt
def get_analysis_plan_prompt(natural_language_query, chat_history, search_fields=None):
"""
Generates the prompt for creating a Solr analysis plan from a user query.
Args:
natural_language_query (str): The user's query.
chat_history (list): A list of previous user and bot messages.
search_fields (list, optional): A list of dictionaries with 'field_name' and 'field_value'.
"""
formatted_field_info = format_metadata_for_prompt()
formatted_history = ""
for user_msg, bot_msg in chat_history:
if user_msg:
formatted_history += f"- User: \"{user_msg}\"\n"
dynamic_fields_prompt_section = ""
if search_fields:
formatted_fields = "\n".join([f" - {field['field_name']}: {field['field_value']}" for field in search_fields])
dynamic_fields_prompt_section = f"""
---
### DYNAMIC FIELD SUGGESTIONS (Use Critically)
An external API has suggested the following field-value pairs based on your query.
**These are only HINTS.** Do NOT use them blindly.
Critically evaluate if they make sense. For example, a `molecule_name` associated with a `company_name` might be irrelevant or illogical.
Use only what is logical for the query. Do not construct filters from fields/values that do not make sense.
**Suggested Fields:**
{formatted_fields}
"""
return f"""
You are an expert data analyst and Solr query engineer. Your task is to convert a natural language question into a structured JSON "Analysis Plan". This plan will be used to run two separate, efficient queries: one for aggregate data (facets) and one for finding illustrative examples (grouping).
---
### CONTEXT & RULES
1. **Today's Date for Calculations**: {datetime.datetime.now().date().strftime("%Y-%m-%d")}
2. **Field Usage**: You MUST use the fields described in the 'Field Definitions'. Pay close attention to the definitions to select the correct field, especially the `_s` fields for searching. Do not use fields ending with `_s` in `group.field` or facet `field` unless necessary for the analysis.
3. **Dimension vs. Measure**:
* `analysis_dimension`: The primary categorical field the user wants to group by (e.g., `company_name`, `route_branch`). This is the `group by` field.
* `analysis_measure`: The metric to aggregate (e.g., `sum(total_deal_value_in_million)`) or the method of counting (`count`).
* `sort_field_for_examples`: The raw field used to find the "best" example. If `analysis_measure` is `sum(field)`, this should be `field`. If `analysis_measure` is `count`, this should be a relevant field like `date`.
4. **Crucial Sorting Rules**:
* For `group.sort`: If `analysis_measure` involves a function on a field (e.g., `sum(total_deal_value_in_million)`), you MUST use the full function: `group.sort: 'sum(total_deal_value_in_million) desc'`.
* If `analysis_measure` is 'count', you MUST OMIT the `group.sort` parameter entirely.
* For sorting, NEVER use 'date_year' directly for `sort` in `terms` facets; use 'index asc' or 'index desc' instead. For other sorts, use 'date'.
5. **Output Format**: Your final output must be a single, raw JSON object. Do not add comments or markdown formatting.
---
### FIELD DEFINITIONS (Your Source of Truth)
{formatted_field_info}
{dynamic_fields_prompt_section}
---
### CHAT HISTORY
{formatted_history}
---
### EXAMPLES
**User Query 1:** "What are the top 5 companies by total deal value in 2023?"
**Correct JSON Output 1:**
```json
{{
"analysis_dimension": "company_name",
"analysis_measure": "sum(total_deal_value_in_million)",
"sort_field_for_examples": "total_deal_value_in_million",
"query_filter": "date_year:2023 AND total_deal_value_in_million:[0 TO *]",
"quantitative_request": {{
"json.facet": {{
"companies_by_deal_value": {{
"type": "terms",
"field": "company_name",
"limit": 5,
"sort": "total_value desc",
"facet": {{
"total_value": "sum(total_deal_value_in_million)"
}}
}}
}}
}},
"qualitative_request": {{
"group": true,
"group.field": "company_name",
"group.limit": 1,
"group.sort": "sum(total_deal_value_in_million) desc",
"sort": "total_deal_value_in_million desc"
}}
}}
```
**User Query 2:** "What are the most common news types for infections this year?"
**Correct JSON Output 2:**
```json
{{
"analysis_dimension": "news_type",
"analysis_measure": "count",
"sort_field_for_examples": "date",
"query_filter": "therapeutic_category_s:infections AND date_year:{datetime.datetime.now().year}",
"quantitative_request": {{
"json.facet": {{
"news_by_type": {{
"type": "terms",
"field": "news_type",
"limit": 10,
"sort": "count desc"
}}
}}
}},
"qualitative_request": {{
"group": true,
"group.field": "news_type",
"group.limit": 1,
"sort": "date desc"
}}
}}
```
---
### YOUR TASK
Convert the following user query into a single, raw JSON "Analysis Plan" object, strictly following all rules and considering the chat history.
**Current User Query:** `{natural_language_query}`
"""
# The other prompt functions remain unchanged.
def get_synthesis_report_prompt(query, quantitative_data, qualitative_data, plan):
"""
Generates the prompt for synthesizing a final report from the query results.
"""
qualitative_prompt_str = ""
dimension = plan.get('analysis_dimension', 'N/A')
if qualitative_data and dimension in qualitative_data:
for group in qualitative_data.get(dimension, {}).get('groups', []):
group_value = group.get('groupValue', 'N/A')
if group.get('doclist', {}).get('docs'):
doc = group.get('doclist', {}).get('docs', [{}])[0]
title = doc.get('abstract', ['No Title'])
content_list = doc.get('content', [])
content_snip = (' '.join(content_list[0].split()[:40]) + '...') if content_list else 'No content available.'
metric_val_raw = doc.get(plan.get('sort_field_for_examples'), 'N/A')
metric_val = metric_val_raw[0] if isinstance(metric_val_raw, list) else metric_val_raw
qualitative_prompt_str += f"- **For category `{group_value}`:**\n"
qualitative_prompt_str += f" - **Top Example Title:** {title}\n"
qualitative_prompt_str += f" - **Metric Value:** {metric_val}\n"
qualitative_prompt_str += f" - **Content Snippet:** {content_snip}\n\n"
return f"""
You are a top-tier business intelligence analyst. Your task is to write an insightful, data-driven report for an executive. You must synthesize quantitative data (the 'what') with qualitative examples (the 'why') to tell a complete story.
---
### AVAILABLE INFORMATION
**1. The User's Core Question:**
\"{query}\"
**2. Quantitative Data (The 'What'):**
This data shows the high-level aggregates.
```json
{json.dumps(quantitative_data, indent=2)}
```
**3. Qualitative Data (The 'Why'):
These are the single most significant documents driving the numbers for each category.
{qualitative_prompt_str}
---
### REPORTING INSTRUCTIONS
Your report must be in clean, professional Markdown and follow this structure precisely.
**Report Structure:**
`## Executive Summary`
- A 1-2 sentence, top-line answer to the user's question based on the quantitative data.
`### Key Findings`
- Use bullet points to highlight the main figures from the quantitative data. Interpret the numbers.
`### Key Drivers & Illustrative Examples`
- **This is the most important section.** Explain the "so what?" behind the numbers.
- Use the qualitative examples to explain *why* a category is high or low. Reference the top example document for each main category.
`### Deeper Dive: Suggested Follow-up Analyses`
- Propose 2-3 logical next questions based on your analysis to uncover deeper trends.
---
**Generate the full report now, paying close attention to all formatting and spacing rules.**
"""
def get_visualization_code_prompt(query_context, facet_data):
"""
Generates the prompt for creating Python visualization code.
"""
return f"""
You are a Python Data Visualization expert specializing in Matplotlib and Seaborn.
Your task is to generate robust, error-free Python code to create a single, insightful visualization based on the user's query and the provided Solr facet data.
**User's Analytical Goal:**
\"{query_context}\"
**Aggregated Data (from Solr Facets):**
```json
{json.dumps(facet_data, indent=2)}
```
---
### **CRITICAL INSTRUCTIONS: CODE GENERATION RULES**
You MUST follow these rules to avoid errors.
**1. Identify the Data Structure FIRST:**
Before writing any code, analyze the `facet_data` JSON to determine its structure. There are three common patterns. Choose the correct template below.
* **Pattern A: Simple `terms` Facet.** The JSON has ONE main key (besides "count") which contains a list of "buckets". Each bucket has a "val" and a "count". Use this for standard bar charts.
* **Pattern B: Multiple `query` Facets.** The JSON has MULTIPLE keys (besides "count"), and each key is an object containing metrics like "count" or "sum(...)". Use this for comparing a few distinct items (e.g., "oral vs injection").
* **Pattern C: Nested `terms` Facet.** The JSON has one main key with a list of "buckets", but inside EACH bucket, there are nested metric objects. This is used for grouped comparisons (e.g., "compare 2024 vs 2025 across categories"). This almost always requires `pandas`.
**2. Use the Correct Parsing Template:**
---
**TEMPLATE FOR PATTERN A (Simple Bar Chart from `terms` facet):**
```python
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
plt.style.use('seaborn-v0_8-whitegrid')
fig, ax = plt.subplots(figsize=(12, 8))
# Dynamically find the main facet key (the one with 'buckets')
facet_key = None
for key, value in facet_data.items():
if isinstance(value, dict) and 'buckets' in value:
facet_key = key
break
if facet_key:
buckets = facet_data[facet_key].get('buckets', [])
# Check if buckets contain data
if buckets:
df = pd.DataFrame(buckets)
# Check for a nested metric or use 'count'
if 'total_deal_value' in df.columns and pd.api.types.is_dict_like(df['total_deal_value'].iloc):
# Example for nested sum metric
df['value'] = df['total_deal_value'].apply(lambda x: x.get('sum', 0))
y_axis_label = 'Sum of Total Deal Value'
else:
df.rename(columns={{'count': 'value'}}, inplace=True)
y_axis_label = 'Count'
sns.barplot(data=df, x='val', y='value', ax=ax, palette='viridis')
ax.set_xlabel('Category')
ax.set_ylabel(y_axis_label)
else:
ax.text(0.5, 0.5, 'No data in buckets to plot.', ha='center')
ax.set_title('Your Insightful Title Here')
# Correct way to rotate labels to prevent errors
plt.setp(ax.get_xticklabels(), rotation=45, ha="right", rotation_mode="anchor")
plt.tight_layout()
```
---
**TEMPLATE FOR PATTERN B (Comparison Bar Chart from `query` facets):**
```python
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
plt.style.use('seaborn-v0_8-whitegrid')
fig, ax = plt.subplots(figsize=(10, 6))
labels = []
values = []
# Iterate through top-level keys, skipping the 'count'
for key, data_dict in facet_data.items():
if key == 'count' or not isinstance(data_dict, dict):
continue
# Extract the label (e.g., 'oral_deals' -> 'Oral')
label = key.replace('_deals', '').replace('_', ' ').title()
# Find the metric value, which is NOT 'count'
metric_value = 0
for sub_key, sub_value in data_dict.items():
if sub_key != 'count':
metric_value = sub_value
break # Found the metric
labels.append(label)
values.append(metric_value)
if labels:
sns.barplot(x=labels, y=values, ax=ax, palette='mako')
ax.set_ylabel('Total Deal Value') # Or other metric name
ax.set_xlabel('Category')
else:
ax.text(0.5, 0.5, 'No query facet data to plot.', ha='center')
ax.set_title('Your Insightful Title Here')
plt.tight_layout()
```
---
**TEMPLATE FOR PATTERN C (Grouped Bar Chart from nested `terms` facet):**
```python
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
plt.style.use('seaborn-v0_8-whitegrid')
fig, ax = plt.subplots(figsize=(14, 8))
# Find the key that has the buckets
facet_key = None
for key, value in facet_data.items():
if isinstance(value, dict) and 'buckets' in value:
facet_key = key
break
if facet_key and facet_data[facet_key].get('buckets'):
# This list comprehension is robust for parsing nested metrics
plot_data = []
for bucket in facet_data[facet_key]['buckets']:
category = bucket['val']
# Find all nested metrics (e.g., total_deal_value_2025)
for sub_key, sub_value in bucket.items():
if isinstance(sub_value, dict) and 'sum' in sub_value:
# Extracts year from 'total_deal_value_2025' -> '2025'
year = sub_key.split('_')[-1]
value = sub_value['sum']
plot_data.append({{'Category': category, 'Year': year, 'Value': value}})
if plot_data:
df = pd.DataFrame(plot_data)
sns.barplot(data=df, x='Category', y='Value', hue='Year', ax=ax)
ax.set_ylabel('Total Deal Value')
ax.set_xlabel('Business Model')
# Correct way to rotate labels to prevent errors
plt.setp(ax.get_xticklabels(), rotation=45, ha="right", rotation_mode="anchor")
else:
ax.text(0.5, 0.5, 'No nested data found to plot.', ha='center')
else:
ax.text(0.5, 0.5, 'No data in buckets to plot.', ha='center')
ax.set_title('Your Insightful Title Here')
plt.tight_layout()
```
---
**3. Final Code Generation:**
- **DO NOT** include `plt.show()`.
- **DO** set a dynamic and descriptive `ax.set_title()`, `ax.set_xlabel()`, and `ax.set_ylabel()`.
- **DO NOT** wrap the code in ```python ... ```. Output only the raw Python code.
- Adapt the chosen template to the specific keys and metrics in the provided `facet_data`.
**Your Task:**
Now, generate the Python code.
"""