Upload 2 files
Browse files- app.py +813 -0
- requirements.txt +8 -0
app.py
ADDED
@@ -0,0 +1,813 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import json
|
3 |
+
import re
|
4 |
+
import datetime
|
5 |
+
import pandas as pd
|
6 |
+
import pysolr
|
7 |
+
import google.generativeai as genai
|
8 |
+
from sshtunnel import SSHTunnelForwarder
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
import seaborn as sns
|
11 |
+
import io
|
12 |
+
import os
|
13 |
+
import logging
|
14 |
+
import concurrent.futures
|
15 |
+
from IPython.display import display, Markdown
|
16 |
+
import copy
|
17 |
+
|
18 |
+
|
19 |
+
# --- Suppress Matplotlib Debug Logs ---
|
20 |
+
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
21 |
+
|
22 |
+
# --- SSH Tunnel Configuration ---
|
23 |
+
# It's recommended to load secrets securely, e.g., from environment variables
|
24 |
+
SSH_HOST = os.environ.get('SSH_HOST')
|
25 |
+
SSH_PORT = 5322
|
26 |
+
SSH_USER = os.environ.get('SSH_USER')
|
27 |
+
SSH_PASS = os.environ.get('SSH_PASS')
|
28 |
+
|
29 |
+
# --- Solr Configuration ---
|
30 |
+
REMOTE_SOLR_HOST = '69.167.186.48'
|
31 |
+
REMOTE_SOLR_PORT = 8983
|
32 |
+
LOCAL_BIND_PORT = 8983
|
33 |
+
SOLR_CORE_NAME = 'news'
|
34 |
+
SOLR_USER = os.environ.get('SOLR_USER')
|
35 |
+
SOLR_PASS = os.environ.get('SOLR_PASS')
|
36 |
+
|
37 |
+
# --- Google Gemini Configuration ---
|
38 |
+
try:
|
39 |
+
genai.configure(api_key=os.environ.get('GEMINI_API_KEY'))
|
40 |
+
except Exception as e:
|
41 |
+
print(f"β Gemini API Key Error: {e}. Please ensure 'GEMINI_API_KEY' is set in your environment.")
|
42 |
+
|
43 |
+
# --- Global Variables ---
|
44 |
+
ssh_tunnel_server = None
|
45 |
+
solr_client = None
|
46 |
+
llm_model = None
|
47 |
+
is_initialized = False
|
48 |
+
|
49 |
+
try:
|
50 |
+
# 1. Start the SSH Tunnel
|
51 |
+
ssh_tunnel_server = SSHTunnelForwarder(
|
52 |
+
(SSH_HOST, SSH_PORT),
|
53 |
+
ssh_username=SSH_USER,
|
54 |
+
ssh_password=SSH_PASS,
|
55 |
+
remote_bind_address=(REMOTE_SOLR_HOST, REMOTE_SOLR_PORT),
|
56 |
+
local_bind_address=('127.0.0.1', LOCAL_BIND_PORT)
|
57 |
+
)
|
58 |
+
ssh_tunnel_server.start()
|
59 |
+
print(f"π SSH tunnel established: Local Port {ssh_tunnel_server.local_bind_port} -> Remote Solr.")
|
60 |
+
|
61 |
+
# 2. Initialize the pysolr client
|
62 |
+
solr_url = f'http://127.0.0.1:{ssh_tunnel_server.local_bind_port}/solr/{SOLR_CORE_NAME}'
|
63 |
+
solr_client = pysolr.Solr(solr_url, auth=(SOLR_USER, SOLR_PASS), always_commit=True)
|
64 |
+
solr_client.ping()
|
65 |
+
print(f"β
Solr connection successful on core '{SOLR_CORE_NAME}'.")
|
66 |
+
|
67 |
+
# 3. Initialize the LLM
|
68 |
+
llm_model = genai.GenerativeModel('gemini-2.5-flash', generation_config=genai.types.GenerationConfig(temperature=0))
|
69 |
+
print(f"β
LLM Model '{llm_model.model_name}' initialized.")
|
70 |
+
|
71 |
+
print("β
System Initialized Successfully.")
|
72 |
+
is_initialized = True
|
73 |
+
|
74 |
+
except Exception as e:
|
75 |
+
print(f"\nβ An error occurred during setup: {e}")
|
76 |
+
if ssh_tunnel_server and ssh_tunnel_server.is_active:
|
77 |
+
ssh_tunnel_server.stop()
|
78 |
+
|
79 |
+
|
80 |
+
field_metadata = [
|
81 |
+
{
|
82 |
+
"field_name": "business_model",
|
83 |
+
"type": "string (categorical)",
|
84 |
+
"example_values": ["pharma/bio", "drug delivery", "pharma services"],
|
85 |
+
"definition": "The primary business category of the company involved in the news. Use for filtering by high-level industry segments."
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"field_name": "news_type",
|
89 |
+
"type": "string (categorical)",
|
90 |
+
"example_values": ["product news", "financial news", "regulatory news"],
|
91 |
+
"definition": "The category of the news article itself (e.g., financial, regulatory, acquisition). Use for filtering by the type of event being reported."
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"field_name": "event_type",
|
95 |
+
"type": "string (categorical)",
|
96 |
+
"example_values": ["phase 2", "phase 1", "pre clinical", "marketed"],
|
97 |
+
"definition": "The clinical or developmental stage of a product or event discussed in the article. Essential for queries about clinical trial phases."
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"field_name": "source",
|
101 |
+
"type": "string (categorical)",
|
102 |
+
"example_values": ["Press Release", "PR Newswire", "Business Wire"],
|
103 |
+
"definition": "The original source of the news article, such as a newswire or official report."
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"field_name": "company_name",
|
107 |
+
"type": "string (exact match, for faceting)",
|
108 |
+
"example_values": ["pfizer inc.", "astrazeneca plc", "roche"],
|
109 |
+
"definition": "The canonical, standardized name of a company. **Crucially, you MUST use this field for `terms` faceting** to group results by a unique company. Do NOT use this for searching."
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"field_name": "company_name_s",
|
113 |
+
"type": "string (multi-valued, for searching)",
|
114 |
+
"example_values": ["pfizer inc.", "roche", "f. hoffmann-la roche ag", "nih"],
|
115 |
+
"definition": "A field containing all known names and synonyms for a company. **You MUST use this field for all `query` parameter searches involving a company name** to ensure comprehensive results. Do NOT use for `terms` faceting."
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"field_name": "territory_hq_s",
|
119 |
+
"type": "string (multi-valued, hierarchical)",
|
120 |
+
"example_values": ["united states of america", "europe", "europe western"],
|
121 |
+
"definition": "The geographic location (country and continent) of a company's headquarters. It is hierarchical. Use for filtering by location."
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"field_name": "therapeutic_category",
|
125 |
+
"type": "string (specific)",
|
126 |
+
"example_values": ["cancer, other", "cancer, nsclc metastatic", "alzheimer's"],
|
127 |
+
"definition": "The specific disease or therapeutic area being targeted. Use for very specific disease queries."
|
128 |
+
},
|
129 |
+
{
|
130 |
+
"field_name": "therapeutic_category_s",
|
131 |
+
"type": "string (multi-valued, for searching)",
|
132 |
+
"example_values": ["cancer", "oncology", "infections", "cns"],
|
133 |
+
"definition": "Broader, multi-valued therapeutic categories and their synonyms. **Use this field for broad category searches** in the `query` parameter."
|
134 |
+
},
|
135 |
+
{
|
136 |
+
"field_name": "compound_name",
|
137 |
+
"type": "string (exact match, for faceting)",
|
138 |
+
"example_values": ["opdivo injection solution", "keytruda injection solution"],
|
139 |
+
"definition": "The specific, full trade name of a drug. **Use this field for `terms` faceting** on compounds."
|
140 |
+
},
|
141 |
+
{
|
142 |
+
"field_name": "compound_name_s",
|
143 |
+
"type": "string (multi-valued, for searching)",
|
144 |
+
"example_values": ["nivolumab injection solution", "opdivo injection solution", "ono-4538 injection solution"],
|
145 |
+
"definition": "A field with all known trade names and synonyms for a drug. **Use this field for all `query` parameter searches** involving a compound name."
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"field_name": "molecule_name",
|
149 |
+
"type": "string (exact match, for faceting)",
|
150 |
+
"example_values": ["cannabidiol", "paclitaxel", "pembrolizumab"],
|
151 |
+
"definition": "The generic, non-proprietary name of the active molecule. **Use this field for `terms` faceting** on molecules."
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"field_name": "molecule_name_s",
|
155 |
+
"type": "string (multi-valued, for searching)",
|
156 |
+
"example_values": ["cbd", "s1-220", "a1002n5s"],
|
157 |
+
"definition": "A field with all known generic names and synonyms for a molecule. **Use this field for all `query` parameter searches** involving a molecule name."
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"field_name": "highest_phase",
|
161 |
+
"type": "string (categorical)",
|
162 |
+
"example_values": ["marketed", "phase 2", "phase 1"],
|
163 |
+
"definition": "The highest stage of development a drug has ever reached."
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"field_name": "drug_delivery_branch_s",
|
167 |
+
"type": "string (multi-valued, for searching)",
|
168 |
+
"example_values": ["injection", "parenteral", "oral", "injection, other", "oral, other"],
|
169 |
+
"definition": "The method of drug administration. **Use this for `query` parameter searches about route of administration** as it contains broader, search-friendly terms."
|
170 |
+
},
|
171 |
+
{
|
172 |
+
"field_name": "drug_delivery_branch",
|
173 |
+
"type": "string (categorical, specific, for faceting)",
|
174 |
+
"example_values": ["injection, other", "prefilled syringes", "np liposome", "oral enteric/delayed release"],
|
175 |
+
"definition": "The most specific category of drug delivery technology. **Use this field for `terms` faceting** on specific delivery technologies."
|
176 |
+
},
|
177 |
+
{
|
178 |
+
"field_name": "route_branch",
|
179 |
+
"type": "string (categorical)",
|
180 |
+
"example_values": ["injection", "oral", "topical", "inhalation"],
|
181 |
+
"definition": "The primary route of drug administration. Good for faceting on exact routes."
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"field_name": "molecule_api_group",
|
185 |
+
"type": "string (categorical)",
|
186 |
+
"example_values": ["small molecules", "biologics", "nucleic acids"],
|
187 |
+
"definition": "High-level classification of the drug's molecular type."
|
188 |
+
},
|
189 |
+
{
|
190 |
+
"field_name": "content",
|
191 |
+
"type": "text (full-text search)",
|
192 |
+
"example_values": ["The largest study to date...", "balstilimab..."],
|
193 |
+
"definition": "The full text content of the news article. Use for keyword searches on topics not covered by other specific fields."
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"field_name": "date",
|
197 |
+
"type": "date",
|
198 |
+
"example_values": ["2020-10-22T00:00:00Z"],
|
199 |
+
"definition": "The full publication date and time in ISO 8601 format. Use for precise date range queries."
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"field_name": "date_year",
|
203 |
+
"type": "number (year)",
|
204 |
+
"example_values": [2020, 2021, 2022],
|
205 |
+
"definition": "The 4-digit year of publication. **Use this for queries involving whole years** (e.g., 'in 2023', 'last year', 'since 2020')."
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"field_name": "total_deal_value_in_million",
|
209 |
+
"type": "number (metric)",
|
210 |
+
"example_values": [50, 120.5, 176.157, 1000],
|
211 |
+
"definition": "The total value of a financial deal, in millions of USD. This is the primary numeric field for financial aggregations (sum, avg, etc.). To use this, you must also filter for news that has a deal value, e.g., 'total_deal_value_in_million:[0 TO *]'."
|
212 |
+
}
|
213 |
+
]
|
214 |
+
|
215 |
+
# Helper function to format the metadata for the prompt
|
216 |
+
def format_metadata_for_prompt(metadata):
|
217 |
+
formatted_string = ""
|
218 |
+
for field in metadata:
|
219 |
+
formatted_string += f"- **{field['field_name']}**\n"
|
220 |
+
formatted_string += f" - **Type**: {field['type']}\n"
|
221 |
+
formatted_string += f" - **Definition**: {field['definition']}\n"
|
222 |
+
formatted_string += f" - **Examples**: {', '.join(map(str, field['example_values']))}\n\n"
|
223 |
+
return formatted_string
|
224 |
+
formatted_field_info = format_metadata_for_prompt(field_metadata)
|
225 |
+
|
226 |
+
|
227 |
+
def parse_suggestions_from_report(report_text):
|
228 |
+
"""Extracts numbered suggestions from the report's markdown text."""
|
229 |
+
suggestions_match = re.search(r"### (?:Deeper Dive: Suggested Follow-up Analyses|Suggestions for Further Exploration)\s*\n(.*?)$", report_text, re.DOTALL | re.IGNORECASE)
|
230 |
+
if not suggestions_match: return []
|
231 |
+
suggestions_text = suggestions_match.group(1)
|
232 |
+
suggestions = re.findall(r"^\s*\d+\.\s*(.*)", suggestions_text, re.MULTILINE)
|
233 |
+
return [s.strip() for s in suggestions]
|
234 |
+
|
235 |
+
|
236 |
+
def llm_generate_analysis_plan_with_history(natural_language_query, field_metadata, chat_history):
|
237 |
+
"""
|
238 |
+
Generates a complete analysis plan from a user query, considering chat history.
|
239 |
+
This plan includes dimensions, measures, and requests for both quantitative (
|
240 |
+
facet)
|
241 |
+
and qualitative (grouping) data.
|
242 |
+
"""
|
243 |
+
formatted_history = ""
|
244 |
+
for user_msg, bot_msg in chat_history:
|
245 |
+
if user_msg:
|
246 |
+
formatted_history += f"- User: \"{user_msg}\"\n"
|
247 |
+
|
248 |
+
prompt = f"""
|
249 |
+
You are an expert data analyst and Solr query engineer. Your task is to convert a natural language question into a structured JSON "Analysis Plan". This plan will be used to run two separate, efficient queries: one for aggregate data (facets) and one for finding illustrative examples (grouping).
|
250 |
+
|
251 |
+
---
|
252 |
+
### CONTEXT & RULES
|
253 |
+
|
254 |
+
1. **Today's Date for Calculations**: {datetime.datetime.now().date().strftime("%Y-%m-%d")}
|
255 |
+
2. **Field Usage**: You MUST use the fields described in the 'Field Definitions'. Pay close attention to the definitions to select the correct field, especially the `_s` fields for searching. Do not use fields ending with `_s` in `group.field` or facet `field` unless necessary for the analysis.
|
256 |
+
3. **Dimension vs. Measure**:
|
257 |
+
* `analysis_dimension`: The primary categorical field the user wants to group by (e.g., `company_name`, `route_branch`). This is the `group by` field.
|
258 |
+
* `analysis_measure`: The metric to aggregate (e.g., `sum(total_deal_value_in_million)`) or the method of counting (`count`).
|
259 |
+
* `sort_field_for_examples`: The raw field used to find the "best" example. If `analysis_measure` is `sum(field)`, this should be `field`. If `analysis_measure` is `count`, this should be a relevant field like `date`.
|
260 |
+
4. **Crucial Sorting Rules**:
|
261 |
+
* For `group.sort`: If `analysis_measure` involves a function on a field (e.g., `sum(total_deal_value_in_million)`), you MUST use the full function: `group.sort: 'sum(total_deal_value_in_million) desc'`.
|
262 |
+
* If `analysis_measure` is 'count', you MUST OMIT the `group.sort` parameter entirely.
|
263 |
+
* For sorting, NEVER use 'date_year'; use 'date' instead.
|
264 |
+
5. **Output Format**: Your final output must be a single, raw JSON object. Do not add comments or markdown formatting.
|
265 |
+
|
266 |
+
---
|
267 |
+
### FIELD DEFINITIONS (Your Source of Truth)
|
268 |
+
|
269 |
+
{formatted_field_info}
|
270 |
+
---
|
271 |
+
### CHAT HISTORY
|
272 |
+
{formatted_history}
|
273 |
+
---
|
274 |
+
### EXAMPLES
|
275 |
+
|
276 |
+
**User Query 1:** "What are the top 5 companies by total deal value in 2023?"
|
277 |
+
**Correct JSON Output 1:**
|
278 |
+
```json
|
279 |
+
{{
|
280 |
+
"analysis_dimension": "company_name",
|
281 |
+
"analysis_measure": "sum(total_deal_value_in_million)",
|
282 |
+
"sort_field_for_examples": "total_deal_value_in_million",
|
283 |
+
"query_filter": "date_year:2023 AND total_deal_value_in_million:[0 TO *]",
|
284 |
+
"quantitative_request": {{
|
285 |
+
"json.facet": {{
|
286 |
+
"companies_by_deal_value": {{
|
287 |
+
"type": "terms",
|
288 |
+
"field": "company_name",
|
289 |
+
"limit": 5,
|
290 |
+
"sort": "total_value desc",
|
291 |
+
"facet": {{
|
292 |
+
"total_value": "sum(total_deal_value_in_million)"
|
293 |
+
}}
|
294 |
+
}}
|
295 |
+
}}
|
296 |
+
}},
|
297 |
+
"qualitative_request": {{
|
298 |
+
"group": true,
|
299 |
+
"group.field": "company_name",
|
300 |
+
"group.limit": 1,
|
301 |
+
"group.sort": "sum(total_deal_value_in_million) desc",
|
302 |
+
"sort": "total_deal_value_in_million desc"
|
303 |
+
}}
|
304 |
+
}}
|
305 |
+
```
|
306 |
+
|
307 |
+
**User Query 2:** "What are the most common news types for infections this year?"
|
308 |
+
**Correct JSON Output 2:**
|
309 |
+
```json
|
310 |
+
{{
|
311 |
+
"analysis_dimension": "news_type",
|
312 |
+
"analysis_measure": "count",
|
313 |
+
"sort_field_for_examples": "date",
|
314 |
+
"query_filter": "therapeutic_category_s:infections AND date_year:{datetime.datetime.now().year}",
|
315 |
+
"quantitative_request": {{
|
316 |
+
"json.facet": {{
|
317 |
+
"news_by_type": {{
|
318 |
+
"type": "terms",
|
319 |
+
"field": "news_type",
|
320 |
+
"limit": 10,
|
321 |
+
"sort": "count desc"
|
322 |
+
}}
|
323 |
+
}}
|
324 |
+
}},
|
325 |
+
"qualitative_request": {{
|
326 |
+
"group": true,
|
327 |
+
"group.field": "news_type",
|
328 |
+
"group.limit": 1,
|
329 |
+
"sort": "date desc"
|
330 |
+
}}
|
331 |
+
}}
|
332 |
+
```
|
333 |
+
---
|
334 |
+
### YOUR TASK
|
335 |
+
|
336 |
+
Convert the following user query into a single, raw JSON "Analysis Plan" object, strictly following all rules and considering the chat history.
|
337 |
+
|
338 |
+
**Current User Query:** `{natural_language_query}`
|
339 |
+
"""
|
340 |
+
try:
|
341 |
+
response = llm_model.generate_content(prompt)
|
342 |
+
cleaned_text = re.sub(r'```json\s*|\s*```', '', response.text, flags=re.MULTILINE | re.DOTALL).strip()
|
343 |
+
plan = json.loads(cleaned_text)
|
344 |
+
return plan
|
345 |
+
except Exception as e:
|
346 |
+
raw_response_text = response.text if 'response' in locals() else 'N/A'
|
347 |
+
print(f"Error in llm_generate_analysis_plan_with_history: {e}\nRaw Response:\n{raw_response_text}")
|
348 |
+
return None
|
349 |
+
|
350 |
+
def execute_quantitative_query(plan, solr):
|
351 |
+
"""Executes the facet query to get aggregate data."""
|
352 |
+
if not plan or 'quantitative_request' not in plan or 'json.facet' not in plan.get('quantitative_request', {}):
|
353 |
+
return None
|
354 |
+
try:
|
355 |
+
params = {
|
356 |
+
"q": plan.get('query_filter', '*:*'),
|
357 |
+
"rows": 0,
|
358 |
+
"json.facet": json.dumps(plan['quantitative_request']['json.facet'])
|
359 |
+
}
|
360 |
+
results = solr.search(**params)
|
361 |
+
return results.raw_response.get("facets", {})
|
362 |
+
except Exception as e:
|
363 |
+
print(f"Error in quantitative query: {e}")
|
364 |
+
return None
|
365 |
+
|
366 |
+
def execute_qualitative_query(plan, solr):
|
367 |
+
"""Executes the grouping query to get the best example docs."""
|
368 |
+
if not plan or 'qualitative_request' not in plan:
|
369 |
+
return None
|
370 |
+
try:
|
371 |
+
qual_request = copy.deepcopy(plan['qualitative_request'])
|
372 |
+
params = {
|
373 |
+
"q": plan.get('query_filter', '*:*'),
|
374 |
+
"rows": 3, # Get a few examples per group
|
375 |
+
"fl": "*,score",
|
376 |
+
**qual_request
|
377 |
+
}
|
378 |
+
results = solr.search(**params)
|
379 |
+
return results.grouped
|
380 |
+
except Exception as e:
|
381 |
+
print(f"Error in qualitative query: {e}")
|
382 |
+
return None
|
383 |
+
|
384 |
+
def llm_synthesize_enriched_report_stream(query, quantitative_data, qualitative_data, plan):
|
385 |
+
"""
|
386 |
+
Generates an enriched report by synthesizing quantitative aggregates
|
387 |
+
and qualitative examples, and streams the result.
|
388 |
+
"""
|
389 |
+
qualitative_prompt_str = ""
|
390 |
+
dimension = plan.get('analysis_dimension', 'N/A')
|
391 |
+
if qualitative_data and dimension in qualitative_data:
|
392 |
+
for group in qualitative_data.get(dimension, {}).get('groups', []):
|
393 |
+
group_value = group.get('groupValue', 'N/A')
|
394 |
+
if group.get('doclist', {}).get('docs'):
|
395 |
+
doc = group.get('doclist', {}).get('docs', [{}])[0]
|
396 |
+
title = doc.get('abstract', ['No Title'])
|
397 |
+
content_list = doc.get('content', [])
|
398 |
+
content_snip = (' '.join(content_list[0].split()[:40]) + '...') if content_list else 'No content available.'
|
399 |
+
metric_val_raw = doc.get(plan.get('sort_field_for_examples'), 'N/A')
|
400 |
+
metric_val = metric_val_raw[0] if isinstance(metric_val_raw, list) else metric_val_raw
|
401 |
+
|
402 |
+
qualitative_prompt_str += f"- **For category `{group_value}`:**\n"
|
403 |
+
qualitative_prompt_str += f" - **Top Example Title:** {title}\n"
|
404 |
+
qualitative_prompt_str += f" - **Metric Value:** {metric_val}\n"
|
405 |
+
qualitative_prompt_str += f" - **Content Snippet:** {content_snip}\n\n"
|
406 |
+
|
407 |
+
prompt = f"""
|
408 |
+
You are a top-tier business intelligence analyst. Your task is to write an insightful, data-driven report for an executive. You must synthesize quantitative data (the 'what') with qualitative examples (the 'why') to tell a complete story.
|
409 |
+
|
410 |
+
---
|
411 |
+
### AVAILABLE INFORMATION
|
412 |
+
|
413 |
+
**1. The User's Core Question:**
|
414 |
+
\"{query}\"
|
415 |
+
|
416 |
+
**2. Quantitative Data (The 'What'):**
|
417 |
+
This data shows the high-level aggregates.
|
418 |
+
```json
|
419 |
+
{json.dumps(quantitative_data, indent=2)}
|
420 |
+
```
|
421 |
+
|
422 |
+
**3. Qualitative Data (The 'Why'):**
|
423 |
+
These are the single most significant documents driving the numbers for each category.
|
424 |
+
{qualitative_prompt_str}
|
425 |
+
|
426 |
+
---
|
427 |
+
### REPORTING INSTRUCTIONS
|
428 |
+
|
429 |
+
Your report must be in clean, professional Markdown and follow this structure precisely.
|
430 |
+
|
431 |
+
**Report Structure:**
|
432 |
+
|
433 |
+
`## Executive Summary`
|
434 |
+
- A 1-2 sentence, top-line answer to the user's question based on the quantitative data.
|
435 |
+
|
436 |
+
`### Key Findings`
|
437 |
+
- Use bullet points to highlight the main figures from the quantitative data. Interpret the numbers.
|
438 |
+
|
439 |
+
`### Key Drivers & Illustrative Examples`
|
440 |
+
- **This is the most important section.** Explain the "so what?" behind the numbers.
|
441 |
+
- Use the qualitative examples to explain *why* a category is high or low. Reference the top example document for each main category.
|
442 |
+
|
443 |
+
`### Deeper Dive: Suggested Follow-up Analyses`
|
444 |
+
- Propose 2-3 logical next questions based on your analysis to uncover deeper trends.
|
445 |
+
|
446 |
+
---
|
447 |
+
**Generate the full report now, paying close attention to all formatting and spacing rules.**
|
448 |
+
"""
|
449 |
+
try:
|
450 |
+
response_stream = llm_model.generate_content(prompt, stream=True)
|
451 |
+
for chunk in response_stream:
|
452 |
+
yield chunk.text
|
453 |
+
except Exception as e:
|
454 |
+
print(f"Error in llm_synthesize_enriched_report_stream: {e}")
|
455 |
+
yield "Sorry, I was unable to generate a report for this data."
|
456 |
+
|
457 |
+
|
458 |
+
def llm_generate_visualization_code(query_context, facet_data):
|
459 |
+
"""Generates Python code for visualization based on query and data."""
|
460 |
+
prompt = f"""
|
461 |
+
You are a Python Data Visualization expert specializing in Matplotlib and Seaborn.
|
462 |
+
Your task is to generate robust, error-free Python code to create a single, insightful visualization based on the user's query and the provided Solr facet data.
|
463 |
+
|
464 |
+
**User's Analytical Goal:**
|
465 |
+
\"{query_context}\"
|
466 |
+
|
467 |
+
**Aggregated Data (from Solr Facets):**
|
468 |
+
```json
|
469 |
+
{json.dumps(facet_data, indent=2)}
|
470 |
+
```
|
471 |
+
|
472 |
+
---
|
473 |
+
### **CRITICAL INSTRUCTIONS: CODE GENERATION RULES**
|
474 |
+
You MUST follow these rules to avoid errors.
|
475 |
+
|
476 |
+
**1. Identify the Data Structure FIRST:**
|
477 |
+
Before writing any code, analyze the `facet_data` JSON to determine its structure. There are three common patterns. Choose the correct template below.
|
478 |
+
|
479 |
+
* **Pattern A: Simple `terms` Facet.** The JSON has ONE main key (besides "count") which contains a list of "buckets". Each bucket has a "val" and a "count". Use this for standard bar charts.
|
480 |
+
* **Pattern B: Multiple `query` Facets.** The JSON has MULTIPLE keys (besides "count"), and each key is an object containing metrics like "count" or "sum(...)". Use this for comparing a few distinct items (e.g., "oral vs injection").
|
481 |
+
* **Pattern C: Nested `terms` Facet.** The JSON has one main key with a list of "buckets", but inside EACH bucket, there are nested metric objects. This is used for grouped comparisons (e.g., "compare 2024 vs 2025 across categories"). This almost always requires `pandas`.
|
482 |
+
|
483 |
+
**2. Use the Correct Parsing Template:**
|
484 |
+
|
485 |
+
---
|
486 |
+
**TEMPLATE FOR PATTERN A (Simple Bar Chart from `terms` facet):**
|
487 |
+
```python
|
488 |
+
import matplotlib.pyplot as plt
|
489 |
+
import seaborn as sns
|
490 |
+
import pandas as pd
|
491 |
+
|
492 |
+
plt.style.use('seaborn-v0_8-whitegrid')
|
493 |
+
fig, ax = plt.subplots(figsize=(12, 8))
|
494 |
+
|
495 |
+
# Dynamically find the main facet key (the one with 'buckets')
|
496 |
+
facet_key = None
|
497 |
+
for key, value in facet_data.items():
|
498 |
+
if isinstance(value, dict) and 'buckets' in value:
|
499 |
+
facet_key = key
|
500 |
+
break
|
501 |
+
|
502 |
+
if facet_key:
|
503 |
+
buckets = facet_data[facet_key].get('buckets', [])
|
504 |
+
# Check if buckets contain data
|
505 |
+
if buckets:
|
506 |
+
df = pd.DataFrame(buckets)
|
507 |
+
# Check for a nested metric or use 'count'
|
508 |
+
if 'total_deal_value' in df.columns and pd.api.types.is_dict_like(df['total_deal_value'].iloc):
|
509 |
+
# Example for nested sum metric
|
510 |
+
df['value'] = df['total_deal_value'].apply(lambda x: x.get('sum', 0))
|
511 |
+
y_axis_label = 'Sum of Total Deal Value'
|
512 |
+
else:
|
513 |
+
df.rename(columns={{'count': 'value'}}, inplace=True)
|
514 |
+
y_axis_label = 'Count'
|
515 |
+
|
516 |
+
sns.barplot(data=df, x='val', y='value', ax=ax, palette='viridis')
|
517 |
+
ax.set_xlabel('Category')
|
518 |
+
ax.set_ylabel(y_axis_label)
|
519 |
+
else:
|
520 |
+
ax.text(0.5, 0.5, 'No data in buckets to plot.', ha='center')
|
521 |
+
|
522 |
+
|
523 |
+
ax.set_title('Your Insightful Title Here')
|
524 |
+
# Correct way to rotate labels to prevent errors
|
525 |
+
plt.setp(ax.get_xticklabels(), rotation=45, ha="right", rotation_mode="anchor")
|
526 |
+
plt.tight_layout()
|
527 |
+
```
|
528 |
+
---
|
529 |
+
**TEMPLATE FOR PATTERN B (Comparison Bar Chart from `query` facets):**
|
530 |
+
```python
|
531 |
+
import matplotlib.pyplot as plt
|
532 |
+
import seaborn as sns
|
533 |
+
import pandas as pd
|
534 |
+
|
535 |
+
plt.style.use('seaborn-v0_8-whitegrid')
|
536 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
537 |
+
|
538 |
+
labels = []
|
539 |
+
values = []
|
540 |
+
# Iterate through top-level keys, skipping the 'count'
|
541 |
+
for key, data_dict in facet_data.items():
|
542 |
+
if key == 'count' or not isinstance(data_dict, dict):
|
543 |
+
continue
|
544 |
+
# Extract the label (e.g., 'oral_deals' -> 'Oral')
|
545 |
+
label = key.replace('_deals', '').replace('_', ' ').title()
|
546 |
+
# Find the metric value, which is NOT 'count'
|
547 |
+
metric_value = 0
|
548 |
+
for sub_key, sub_value in data_dict.items():
|
549 |
+
if sub_key != 'count':
|
550 |
+
metric_value = sub_value
|
551 |
+
break # Found the metric
|
552 |
+
labels.append(label)
|
553 |
+
values.append(metric_value)
|
554 |
+
|
555 |
+
if labels:
|
556 |
+
sns.barplot(x=labels, y=values, ax=ax, palette='mako')
|
557 |
+
ax.set_ylabel('Total Deal Value') # Or other metric name
|
558 |
+
ax.set_xlabel('Category')
|
559 |
+
else:
|
560 |
+
ax.text(0.5, 0.5, 'No query facet data to plot.', ha='center')
|
561 |
+
|
562 |
+
|
563 |
+
ax.set_title('Your Insightful Title Here')
|
564 |
+
plt.tight_layout()
|
565 |
+
```
|
566 |
+
---
|
567 |
+
**TEMPLATE FOR PATTERN C (Grouped Bar Chart from nested `terms` facet):**
|
568 |
+
```python
|
569 |
+
import matplotlib.pyplot as plt
|
570 |
+
import seaborn as sns
|
571 |
+
import pandas as pd
|
572 |
+
|
573 |
+
plt.style.use('seaborn-v0_8-whitegrid')
|
574 |
+
fig, ax = plt.subplots(figsize=(14, 8))
|
575 |
+
|
576 |
+
# Find the key that has the buckets
|
577 |
+
facet_key = None
|
578 |
+
for key, value in facet_data.items():
|
579 |
+
if isinstance(value, dict) and 'buckets' in value:
|
580 |
+
facet_key = key
|
581 |
+
break
|
582 |
+
|
583 |
+
if facet_key and facet_data[facet_key].get('buckets'):
|
584 |
+
# This list comprehension is robust for parsing nested metrics
|
585 |
+
plot_data = []
|
586 |
+
for bucket in facet_data[facet_key]['buckets']:
|
587 |
+
category = bucket['val']
|
588 |
+
# Find all nested metrics (e.g., total_deal_value_2025)
|
589 |
+
for sub_key, sub_value in bucket.items():
|
590 |
+
if isinstance(sub_value, dict) and 'sum' in sub_value:
|
591 |
+
# Extracts year from 'total_deal_value_2025' -> '2025'
|
592 |
+
year = sub_key.split('_')[-1]
|
593 |
+
value = sub_value['sum']
|
594 |
+
plot_data.append({{'Category': category, 'Year': year, 'Value': value}})
|
595 |
+
|
596 |
+
if plot_data:
|
597 |
+
df = pd.DataFrame(plot_data)
|
598 |
+
sns.barplot(data=df, x='Category', y='Value', hue='Year', ax=ax)
|
599 |
+
ax.set_ylabel('Total Deal Value')
|
600 |
+
ax.set_xlabel('Business Model')
|
601 |
+
# Correct way to rotate labels to prevent errors
|
602 |
+
plt.setp(ax.get_xticklabels(), rotation=45, ha="right", rotation_mode="anchor")
|
603 |
+
else:
|
604 |
+
ax.text(0.5, 0.5, 'No nested data found to plot.', ha='center')
|
605 |
+
else:
|
606 |
+
ax.text(0.5, 0.5, 'No data in buckets to plot.', ha='center')
|
607 |
+
|
608 |
+
ax.set_title('Your Insightful Title Here')
|
609 |
+
plt.tight_layout()
|
610 |
+
```
|
611 |
+
---
|
612 |
+
**3. Final Code Generation:**
|
613 |
+
- **DO NOT** include `plt.show()`.
|
614 |
+
- **DO** set a dynamic and descriptive `ax.set_title()`, `ax.set_xlabel()`, and `ax.set_ylabel()`.
|
615 |
+
- **DO NOT** wrap the code in ```python ... ```. Output only the raw Python code.
|
616 |
+
- Adapt the chosen template to the specific keys and metrics in the provided `facet_data`.
|
617 |
+
|
618 |
+
**Your Task:**
|
619 |
+
Now, generate the Python code.
|
620 |
+
"""
|
621 |
+
try:
|
622 |
+
# Increase the timeout for potentially complex generation
|
623 |
+
generation_config = genai.types.GenerationConfig(temperature=0, max_output_tokens=2048)
|
624 |
+
response = llm_model.generate_content(prompt, generation_config=generation_config)
|
625 |
+
# Clean the response to remove markdown formatting
|
626 |
+
code = re.sub(r'^```python\s*|```$', '', response.text, flags=re.MULTILINE)
|
627 |
+
return code
|
628 |
+
except Exception as e:
|
629 |
+
print(f"Error in llm_generate_visualization_code: {e}\nRaw response: {response.text}")
|
630 |
+
return None
|
631 |
+
|
632 |
+
def execute_viz_code_and_get_path(viz_code, facet_data):
|
633 |
+
"""Executes visualization code and returns the path to the saved plot image."""
|
634 |
+
if not viz_code: return None
|
635 |
+
try:
|
636 |
+
if not os.path.exists('/tmp/plots'): os.makedirs('/tmp/plots')
|
637 |
+
plot_path = f"/tmp/plots/plot_{datetime.datetime.now().timestamp()}.png"
|
638 |
+
# The exec environment needs access to the required libraries and the data
|
639 |
+
exec_globals = {'facet_data': facet_data, 'plt': plt, 'sns': sns, 'pd': pd}
|
640 |
+
exec(viz_code, exec_globals)
|
641 |
+
fig = exec_globals.get('fig')
|
642 |
+
if fig:
|
643 |
+
fig.savefig(plot_path, bbox_inches='tight')
|
644 |
+
plt.close(fig) # Important to free up memory
|
645 |
+
return plot_path
|
646 |
+
return None
|
647 |
+
except Exception as e:
|
648 |
+
print(f"ERROR executing visualization code: {e}\n---Code---\n{viz_code}")
|
649 |
+
return None
|
650 |
+
|
651 |
+
|
652 |
+
def process_analysis_flow(user_input, history, state):
|
653 |
+
"""
|
654 |
+
A generator that manages the conversation and yields tuples of UI updates for Gradio.
|
655 |
+
This version uses the dual-query (quantitative/qualitative) approach.
|
656 |
+
"""
|
657 |
+
if state is None:
|
658 |
+
state = {'query_count': 0, 'last_suggestions': []}
|
659 |
+
if history is None:
|
660 |
+
history = []
|
661 |
+
|
662 |
+
# Reset UI for new analysis
|
663 |
+
yield (history, state, gr.update(value=None, visible=False), gr.update(value=None, visible=False), gr.update(value=None, visible=False), gr.update(value=None, visible=False), gr.update(value=None, visible=False))
|
664 |
+
|
665 |
+
query_context = user_input.strip()
|
666 |
+
if not query_context:
|
667 |
+
history.append((user_input, "Please enter a question to analyze."))
|
668 |
+
yield (history, state, None, None, None, None, None)
|
669 |
+
return
|
670 |
+
|
671 |
+
# 1. Acknowledge and generate plan
|
672 |
+
history.append((user_input, f"Analyzing: '{query_context}'\n\n*Generating analysis plan...*"))
|
673 |
+
yield (history, state, None, None, None, None, None)
|
674 |
+
|
675 |
+
analysis_plan = llm_generate_analysis_plan_with_history(query_context, field_metadata, history)
|
676 |
+
if not analysis_plan:
|
677 |
+
history.append((None, "I'm sorry, I couldn't generate a valid analysis plan for that request. Please try rephrasing."))
|
678 |
+
yield (history, state, None, None, None, None, None)
|
679 |
+
return
|
680 |
+
|
681 |
+
history.append((None, "β
Analysis plan generated!"))
|
682 |
+
plan_summary = f"""
|
683 |
+
* **Analysis Dimension:** `{analysis_plan.get('analysis_dimension')}`
|
684 |
+
* **Analysis Measure:** `{analysis_plan.get('analysis_measure')}`
|
685 |
+
* **Query Filter:** `{analysis_plan.get('query_filter')}`
|
686 |
+
"""
|
687 |
+
# Show the plan summary in the main chat
|
688 |
+
history.append((None, plan_summary))
|
689 |
+
# Put the full plan in the accordion
|
690 |
+
formatted_plan = f"**Full Analysis Plan:**\n```json\n{json.dumps(analysis_plan, indent=2)}\n```"
|
691 |
+
yield (history, state, None, None, gr.update(value=formatted_plan, visible=True), None, None)
|
692 |
+
|
693 |
+
|
694 |
+
# 2. Execute Queries in Parallel
|
695 |
+
history.append((None, "*Executing queries for aggregates and examples...*"))
|
696 |
+
yield (history, state, None, None, gr.update(value=formatted_plan, visible=True), None, None)
|
697 |
+
|
698 |
+
aggregate_data = None
|
699 |
+
example_data = None
|
700 |
+
with concurrent.futures.ThreadPoolExecutor() as executor:
|
701 |
+
future_agg = executor.submit(execute_quantitative_query, analysis_plan, solr_client)
|
702 |
+
future_ex = executor.submit(execute_qualitative_query, analysis_plan, solr_client)
|
703 |
+
aggregate_data = future_agg.result()
|
704 |
+
example_data = future_ex.result()
|
705 |
+
|
706 |
+
if not aggregate_data or aggregate_data.get('count', 0) == 0:
|
707 |
+
history.append((None, "No data was found for your query. Please try a different question."))
|
708 |
+
yield (history, state, None, None, gr.update(value=formatted_plan, visible=True), None, None)
|
709 |
+
return
|
710 |
+
|
711 |
+
# Display retrieved data in accordions
|
712 |
+
formatted_agg_data = f"**Quantitative (Aggregate) Data:**\n```json\n{json.dumps(aggregate_data, indent=2)}\n```"
|
713 |
+
formatted_qual_data = f"**Qualitative (Example) Data:**\n```json\n{json.dumps(example_data, indent=2)}\n```"
|
714 |
+
qual_data_display_update = gr.update(value=formatted_qual_data, visible=True)
|
715 |
+
yield (history, state, None, None, gr.update(value=formatted_plan, visible=True), gr.update(value=formatted_agg_data, visible=True), qual_data_display_update)
|
716 |
+
|
717 |
+
|
718 |
+
# 3. Generate Visualization (in parallel with report)
|
719 |
+
history.append((None, "β
Data retrieved. Generating visualization and final report..."))
|
720 |
+
yield (history, state, None, None, gr.update(value=formatted_plan, visible=True), gr.update(value=formatted_agg_data, visible=True), qual_data_display_update)
|
721 |
+
|
722 |
+
with concurrent.futures.ThreadPoolExecutor() as executor:
|
723 |
+
viz_future = executor.submit(llm_generate_visualization_code, query_context, aggregate_data)
|
724 |
+
|
725 |
+
# 4. Generate and Stream Enriched Report
|
726 |
+
report_text = ""
|
727 |
+
stream_history = history[:]
|
728 |
+
for chunk in llm_synthesize_enriched_report_stream(query_context, aggregate_data, example_data, analysis_plan):
|
729 |
+
report_text += chunk
|
730 |
+
yield (stream_history, state, None, gr.update(value=report_text, visible=True), gr.update(value=formatted_plan, visible=True), gr.update(value=formatted_agg_data, visible=True), qual_data_display_update)
|
731 |
+
|
732 |
+
history.append((None, report_text))
|
733 |
+
|
734 |
+
# Get visualization from future
|
735 |
+
viz_code = viz_future.result()
|
736 |
+
plot_path = execute_viz_code_and_get_path(viz_code, aggregate_data)
|
737 |
+
output_plot = gr.update(value=plot_path, visible=True) if plot_path else gr.update(visible=False)
|
738 |
+
if not plot_path:
|
739 |
+
history.append((None, "*I was unable to generate a plot for this data.*\n"))
|
740 |
+
|
741 |
+
yield (history, state, output_plot, report_text, gr.update(value=formatted_plan, visible=True), gr.update(value=formatted_agg_data, visible=True), qual_data_display_update)
|
742 |
+
|
743 |
+
# 5. Finalize
|
744 |
+
state['query_count'] += 1
|
745 |
+
state['last_suggestions'] = parse_suggestions_from_report(report_text)
|
746 |
+
next_prompt = "Analysis complete. What would you like to explore next?"
|
747 |
+
history.append((None, next_prompt))
|
748 |
+
yield (history, state, output_plot, report_text, gr.update(value=formatted_plan, visible=True), gr.update(value=formatted_agg_data, visible=True), qual_data_display_update)
|
749 |
+
|
750 |
+
|
751 |
+
# --- Gradio UI ---
|
752 |
+
with gr.Blocks(theme=gr.themes.Soft(), css="footer {display: none !important}") as demo:
|
753 |
+
state = gr.State()
|
754 |
+
|
755 |
+
with gr.Row():
|
756 |
+
with gr.Column(scale=4):
|
757 |
+
gr.Markdown("# π PharmaCircle AI Data Analyst")
|
758 |
+
with gr.Column(scale=1):
|
759 |
+
clear_button = gr.Button("π Start New Analysis", variant="primary")
|
760 |
+
|
761 |
+
gr.Markdown("Ask a question to begin your analysis. I will generate an analysis plan, retrieve quantitative and qualitative data, create a visualization, and write an enriched report.")
|
762 |
+
|
763 |
+
with gr.Row():
|
764 |
+
with gr.Column(scale=1):
|
765 |
+
chatbot = gr.Chatbot(label="Analysis Chat Log", height=700, show_copy_button=True)
|
766 |
+
msg_textbox = gr.Textbox(placeholder="Ask a question, e.g., 'Show me the top 5 companies by total deal value in 2023'", label="Your Question", interactive=True)
|
767 |
+
|
768 |
+
with gr.Column(scale=2):
|
769 |
+
with gr.Accordion("Generated Analysis Plan", open=False):
|
770 |
+
plan_display = gr.Markdown("Plan will appear here...", visible=True)
|
771 |
+
with gr.Accordion("Retrieved Quantitative Data", open=False):
|
772 |
+
quantitative_data_display = gr.Markdown("Aggregate data will appear here...", visible=False)
|
773 |
+
with gr.Accordion("Retrieved Qualitative Data (Examples)", open=False):
|
774 |
+
qualitative_data_display = gr.Markdown("Example data will appear here...", visible=False)
|
775 |
+
plot_display = gr.Image(label="Visualization", type="filepath", visible=False)
|
776 |
+
report_display = gr.Markdown("Report will be streamed here...", visible=False)
|
777 |
+
|
778 |
+
# --- Event Wiring ---
|
779 |
+
def reset_all():
|
780 |
+
"""Resets the entire UI for a new analysis session."""
|
781 |
+
return (
|
782 |
+
[], # chatbot
|
783 |
+
None, # state
|
784 |
+
"", # msg_textbox
|
785 |
+
gr.update(value=None, visible=False), # plot_display
|
786 |
+
gr.update(value=None, visible=False), # report_display
|
787 |
+
gr.update(value=None, visible=False), # plan_display
|
788 |
+
gr.update(value=None, visible=False), # quantitative_data_display
|
789 |
+
gr.update(value=None, visible=False) # qualitative_data_display
|
790 |
+
)
|
791 |
+
|
792 |
+
msg_textbox.submit(
|
793 |
+
fn=process_analysis_flow,
|
794 |
+
inputs=[msg_textbox, chatbot, state],
|
795 |
+
outputs=[chatbot, state, plot_display, report_display, plan_display, quantitative_data_display, qualitative_data_display],
|
796 |
+
).then(
|
797 |
+
lambda: gr.update(value=""),
|
798 |
+
None,
|
799 |
+
[msg_textbox],
|
800 |
+
queue=False,
|
801 |
+
)
|
802 |
+
|
803 |
+
clear_button.click(
|
804 |
+
fn=reset_all,
|
805 |
+
inputs=None,
|
806 |
+
outputs=[chatbot, state, msg_textbox, plot_display, report_display, plan_display, quantitative_data_display, qualitative_data_display],
|
807 |
+
queue=False
|
808 |
+
)
|
809 |
+
|
810 |
+
if is_initialized:
|
811 |
+
demo.queue().launch(debug=True, share=True)
|
812 |
+
else:
|
813 |
+
print("\nSkipping Gradio launch due to initialization errors.")
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
pysolr
|
3 |
+
sshtunnel
|
4 |
+
google-generativeai
|
5 |
+
pandas
|
6 |
+
seaborn
|
7 |
+
matplotlib
|
8 |
+
IPython
|