""" Core data processing and analysis logic for the PharmaCircle AI Data Analyst. This module orchestrates the main analysis workflow: 1. Takes a user's natural language query. 2. Uses the LLM to generate a structured analysis plan. 3. Executes parallel queries against Solr for quantitative and qualitative data. 4. Generates a data visualization using the LLM. 5. Synthesizes the findings into a comprehensive, user-facing report. """ import json import re import datetime import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import os import concurrent.futures import copy import google.generativeai as genai from llm_prompts import ( get_analysis_plan_prompt, get_synthesis_report_prompt, get_visualization_code_prompt ) def parse_suggestions_from_report(report_text): """Extracts numbered suggestions from the report's markdown text.""" suggestions_match = re.search(r"### (?:Deeper Dive: Suggested Follow-up Analyses|Suggestions for Further Exploration)\s*\n(.*?)$", report_text, re.DOTALL | re.IGNORECASE) if not suggestions_match: return [] suggestions_text = suggestions_match.group(1) suggestions = re.findall(r"^\s*\d+\.\s*(.*)", suggestions_text, re.MULTILINE) return [s.strip() for s in suggestions] def llm_generate_analysis_plan_with_history(llm_model, natural_language_query, chat_history): """ Generates a complete analysis plan from a user query, considering chat history. """ prompt = get_analysis_plan_prompt(natural_language_query, chat_history) try: response = llm_model.generate_content(prompt) cleaned_text = re.sub(r'```json\s*|\s*```', '', response.text, flags=re.MULTILINE | re.DOTALL).strip() plan = json.loads(cleaned_text) return plan except Exception as e: raw_response_text = response.text if 'response' in locals() else 'N/A' print(f"Error in llm_generate_analysis_plan_with_history: {e}\nRaw Response:\n{raw_response_text}") return None def execute_quantitative_query(solr_client, plan): """Executes the facet query to get aggregate data.""" if not plan or 'quantitative_request' not in plan or 'json.facet' not in plan.get('quantitative_request', {}): return None try: params = { "q": plan.get('query_filter', '*_*'), "rows": 0, "json.facet": json.dumps(plan['quantitative_request']['json.facet']) } results = solr_client.search(**params) return results.raw_response.get("facets", {}) except Exception as e: print(f"Error in quantitative query: {e}") return None def execute_qualitative_query(solr_client, plan): """Executes the grouping query to get the best example docs.""" if not plan or 'qualitative_request' not in plan: return None try: qual_request = copy.deepcopy(plan['qualitative_request']) params = { "q": plan.get('query_filter', '*_*'), "rows": 3, # Get a few examples per group "fl": "*,score", **qual_request } results = solr_client.search(**params) return results.grouped except Exception as e: print(f"Error in qualitative query: {e}") return None def llm_synthesize_enriched_report_stream(llm_model, query, quantitative_data, qualitative_data, plan): """ Generates an enriched report by synthesizing quantitative aggregates and qualitative examples, and streams the result. """ prompt = get_synthesis_report_prompt(query, quantitative_data, qualitative_data, plan) try: response_stream = llm_model.generate_content(prompt, stream=True) for chunk in response_stream: yield chunk.text except Exception as e: print(f"Error in llm_synthesize_enriched_report_stream: {e}") yield "Sorry, I was unable to generate a report for this data." def llm_generate_visualization_code(llm_model, query_context, facet_data): """Generates Python code for visualization based on query and data.""" prompt = get_visualization_code_prompt(query_context, facet_data) try: generation_config = genai.types.GenerationConfig(temperature=0, max_output_tokens=2048) response = llm_model.generate_content(prompt, generation_config=generation_config) code = re.sub(r'^```python\s*|```$', '', response.text, flags=re.MULTILINE) return code except Exception as e: print(f"Error in llm_generate_visualization_code: {e}\nRaw response: {response.text}") return None def execute_viz_code_and_get_path(viz_code, facet_data): """Executes visualization code and returns the path to the saved plot image.""" if not viz_code: return None try: if not os.path.exists('/tmp/plots'): os.makedirs('/tmp/plots') plot_path = f"/tmp/plots/plot_{datetime.datetime.now().timestamp()}.png" exec_globals = {'facet_data': facet_data, 'plt': plt, 'sns': sns, 'pd': pd} exec(viz_code, exec_globals) fig = exec_globals.get('fig') if fig: fig.savefig(plot_path, bbox_inches='tight') plt.close(fig) return plot_path return None except Exception as e: print(f"ERROR executing visualization code: {e}\n---Code---\n{viz_code}") return None