""" Defines the Gradio user interface and manages the application's state and event handling. This module is responsible for the presentation layer of the application. It creates the interactive components and orchestrates the analysis workflow by calling functions from the data_processing module. """ import gradio as gr import json import concurrent.futures from data_processing import ( llm_generate_analysis_plan_with_history, execute_quantitative_query, execute_qualitative_query, llm_synthesize_enriched_report_stream, llm_generate_visualization_code, execute_viz_code_and_get_path, parse_suggestions_from_report ) def create_ui(llm_model, solr_client): """ Builds the Gradio UI and wires up all the event handlers. Args: llm_model: The initialized Google Gemini model client. solr_client: The initialized pysolr client. """ with gr.Blocks(theme=gr.themes.Soft(), css="footer {display: none !important}") as demo: state = gr.State() with gr.Row(): with gr.Column(scale=4): gr.Markdown("# PharmaCircle AI Data Analyst") with gr.Column(scale=1): clear_button = gr.Button("🔄 Start New Analysis", variant="primary") gr.Markdown("Ask a question to begin your analysis. I will generate an analysis plan, retrieve quantitative and qualitative data, create a visualization, and write an enriched report.") with gr.Row(): with gr.Column(scale=1): chatbot = gr.Chatbot(label="Analysis Chat Log", height=700, show_copy_button=True) msg_textbox = gr.Textbox(placeholder="Ask a question, e.g., 'Show me the top 5 companies by total deal value in 2023'", label="Your Question", interactive=True) with gr.Column(scale=2): with gr.Accordion("Dynamic Field Suggestions", open=False): suggestions_display = gr.Markdown("Suggestions from the external API will appear here...", visible=True) with gr.Accordion("Generated Analysis Plan", open=False): plan_display = gr.Markdown("Plan will appear here...", visible=True) with gr.Accordion("Retrieved Quantitative Data", open=False): quantitative_data_display = gr.Markdown("Aggregate data will appear here...", visible=False) with gr.Accordion("Retrieved Qualitative Data (Examples)", open=False): qualitative_data_display = gr.Markdown("Example data will appear here...", visible=False) plot_display = gr.Image(label="Visualization", type="filepath", visible=False) report_display = gr.Markdown("Report will be streamed here...", visible=False) def process_analysis_flow(user_input, history, state): """ Manages the conversation and yields UI updates. """ if state is None: state = {'query_count': 0, 'last_suggestions': []} if history is None: history = [] # Reset all displays at the beginning of a new flow yield (history, state, gr.update(value=None, visible=False), gr.update(value=None, visible=False), gr.update(value=None, visible=False), gr.update(value=None, visible=False), gr.update(value=None, visible=False), gr.update(value="Suggestions from the external API will appear here...", visible=False)) query_context = user_input.strip() if not query_context: history.append((user_input, "Please enter a question to analyze.")) yield (history, state, None, None, None, None, None, None) return history.append((user_input, f"Analyzing: '{query_context}'\n\n*Generating analysis plan...*")) yield (history, state, None, None, None, None, None, None) # Generate plan and get search field suggestions analysis_plan, search_fields = llm_generate_analysis_plan_with_history(llm_model, query_context, history) # Update and display search field suggestions in its own accordion if search_fields: suggestions_md = "**External API Suggestions:**\n" + "\n".join([f"- `{field['field_name']}`: `{field['field_value']}`" for field in search_fields]) suggestions_display_update = gr.update(value=suggestions_md, visible=True) else: suggestions_display_update = gr.update(value="No suggestions were returned from the external API.", visible=True) if not analysis_plan: history.append((None, "I'm sorry, I couldn't generate a valid analysis plan. Please try rephrasing.")) yield (history, state, None, None, None, None, None, suggestions_display_update) return history.append((None, "✅ Analysis plan generated!")) plan_summary = f""" * **Analysis Dimension:** `{analysis_plan.get('analysis_dimension')}` * **Analysis Measure:** `{analysis_plan.get('analysis_measure')}` * **Query Filter:** `{analysis_plan.get('query_filter')}` """ history.append((None, plan_summary)) formatted_plan = f"**Full Analysis Plan:**\n```json\n{json.dumps(analysis_plan, indent=2)}\n```" yield (history, state, None, None, gr.update(value=formatted_plan, visible=True), None, None, suggestions_display_update) history.append((None, "*Executing queries for aggregates and examples...*")) yield (history, state, None, None, gr.update(value=formatted_plan, visible=True), None, None, suggestions_display_update) # Execute queries in parallel aggregate_data = None example_data = None with concurrent.futures.ThreadPoolExecutor() as executor: future_agg = executor.submit(execute_quantitative_query, solr_client, analysis_plan) future_ex = executor.submit(execute_qualitative_query, solr_client, analysis_plan) aggregate_data = future_agg.result() example_data = future_ex.result() if not aggregate_data or aggregate_data.get('count', 0) == 0: history.append((None, "No data was found for your query. Please try a different question.")) yield (history, state, None, None, gr.update(value=formatted_plan, visible=True), None, None, suggestions_display_update) return # Display retrieved data formatted_agg_data = f"**Quantitative (Aggregate) Data:**\n```json\n{json.dumps(aggregate_data, indent=2)}\n```" formatted_qual_data = f"**Qualitative (Example) Data:**\n```json\n{json.dumps(example_data, indent=2)}\n```" qual_data_display_update = gr.update(value=formatted_qual_data, visible=True) yield (history, state, None, None, gr.update(value=formatted_plan, visible=True), gr.update(value=formatted_agg_data, visible=True), qual_data_display_update, suggestions_display_update) history.append((None, "✅ Data retrieved. Generating visualization and final report...")) yield (history, state, None, None, gr.update(value=formatted_plan, visible=True), gr.update(value=formatted_agg_data, visible=True), qual_data_display_update, suggestions_display_update) # Generate viz and report with concurrent.futures.ThreadPoolExecutor() as executor: viz_future = executor.submit(llm_generate_visualization_code, llm_model, query_context, aggregate_data) report_text = "" stream_history = history[:] for chunk in llm_synthesize_enriched_report_stream(llm_model, query_context, aggregate_data, example_data, analysis_plan): report_text += chunk yield (stream_history, state, None, gr.update(value=report_text, visible=True), gr.update(value=formatted_plan, visible=True), gr.update(value=formatted_agg_data, visible=True), qual_data_display_update, suggestions_display_update) history.append((None, report_text)) viz_code = viz_future.result() plot_path = execute_viz_code_and_get_path(viz_code, aggregate_data) output_plot = gr.update(value=plot_path, visible=True) if plot_path else gr.update(visible=False) if not plot_path: history.append((None, "*I was unable to generate a plot for this data.*\n")) yield (history, state, output_plot, gr.update(value=report_text), gr.update(value=formatted_plan, visible=True), gr.update(value=formatted_agg_data, visible=True), qual_data_display_update, suggestions_display_update) state['query_count'] += 1 state['last_suggestions'] = parse_suggestions_from_report(report_text) next_prompt = "Analysis complete. What would you like to explore next?" history.append((None, next_prompt)) yield (history, state, output_plot, gr.update(value=report_text), gr.update(value=formatted_plan, visible=True), gr.update(value=formatted_agg_data, visible=True), qual_data_display_update, suggestions_display_update) def reset_all(): """Resets the entire UI for a new analysis session.""" return ( [], None, "", gr.update(value=None, visible=False), gr.update(value=None, visible=False), gr.update(value=None, visible=False), gr.update(value=None, visible=False), gr.update(value=None, visible=False), gr.update(value=None, visible=False) ) msg_textbox.submit( fn=process_analysis_flow, inputs=[msg_textbox, chatbot, state], outputs=[chatbot, state, plot_display, report_display, plan_display, quantitative_data_display, qualitative_data_display, suggestions_display], ).then( lambda: gr.update(value=""), None, [msg_textbox], queue=False, ) clear_button.click( fn=reset_all, inputs=None, outputs=[chatbot, state, msg_textbox, plot_display, report_display, plan_display, quantitative_data_display, qualitative_data_display, suggestions_display], queue=False ) return demo