Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- README.md +63 -12
- app.py +222 -0
- requirements.txt +8 -0
README.md
CHANGED
@@ -1,12 +1,63 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# OpenAI-compatible API for LiquidAI/LFM2-1.2B
|
2 |
+
|
3 |
+
This is a minimal FastAPI server that exposes OpenAI-compatible endpoints backed by the Hugging Face Transformers model `LiquidAI/LFM2-1.2B`.
|
4 |
+
|
5 |
+
Endpoints:
|
6 |
+
- `POST /v1/chat/completions` (OpenAI Chat Completions)
|
7 |
+
- `POST /v1/completions` (OpenAI Completions)
|
8 |
+
- `GET /health` health check
|
9 |
+
|
10 |
+
Runs on port 7860 by default.
|
11 |
+
|
12 |
+
## Setup
|
13 |
+
|
14 |
+
1. Create and activate a Python environment (recommended).
|
15 |
+
2. Install dependencies:
|
16 |
+
|
17 |
+
```bash
|
18 |
+
pip install -r requirements.txt
|
19 |
+
```
|
20 |
+
|
21 |
+
3. Run the server:
|
22 |
+
|
23 |
+
```bash
|
24 |
+
python app.py
|
25 |
+
```
|
26 |
+
|
27 |
+
The API will be available at `http://localhost:7860`. Interactive docs: `http://localhost:7860/docs`.
|
28 |
+
|
29 |
+
## Example requests
|
30 |
+
|
31 |
+
Chat:
|
32 |
+
|
33 |
+
```bash
|
34 |
+
curl http://localhost:7860/v1/chat/completions \
|
35 |
+
-H "Content-Type: application/json" \
|
36 |
+
-d '{
|
37 |
+
"model": "LiquidAI/LFM2-1.2B",
|
38 |
+
"messages": [
|
39 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
40 |
+
{"role": "user", "content": "Write a haiku about the ocean"}
|
41 |
+
],
|
42 |
+
"temperature": 0.7,
|
43 |
+
"max_tokens": 128
|
44 |
+
}'
|
45 |
+
```
|
46 |
+
|
47 |
+
Completions:
|
48 |
+
|
49 |
+
```bash
|
50 |
+
curl http://localhost:7860/v1/completions \
|
51 |
+
-H "Content-Type: application/json" \
|
52 |
+
-d '{
|
53 |
+
"model": "LiquidAI/LFM2-1.2B",
|
54 |
+
"prompt": "Explain quantum computing in simple terms",
|
55 |
+
"temperature": 0.7,
|
56 |
+
"max_tokens": 128
|
57 |
+
}'
|
58 |
+
```
|
59 |
+
|
60 |
+
## Notes
|
61 |
+
- The server auto-selects FP16/BF16 on CUDA if available, otherwise runs on CPU (slow).
|
62 |
+
- Configure with env vars: `MODEL_ID`, `MAX_TOKENS`, `PORT`.
|
63 |
+
- This minimal server supports only `n=1` and returns the first completion.
|
app.py
ADDED
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
import uuid
|
4 |
+
from typing import List, Optional, Dict, Any
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from fastapi import FastAPI, HTTPException
|
8 |
+
from fastapi.responses import RedirectResponse
|
9 |
+
from pydantic import BaseModel, Field
|
10 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
11 |
+
|
12 |
+
MODEL_ID = os.getenv("MODEL_ID", "LiquidAI/LFM2-1.2B")
|
13 |
+
DEFAULT_MAX_TOKENS = int(os.getenv("MAX_TOKENS", "256"))
|
14 |
+
|
15 |
+
app = FastAPI(title="OpenAI-compatible API for LiquidAI/LFM2-1.2B")
|
16 |
+
|
17 |
+
tokenizer = None
|
18 |
+
model = None
|
19 |
+
|
20 |
+
|
21 |
+
def get_dtype() -> torch.dtype:
|
22 |
+
if torch.cuda.is_available():
|
23 |
+
# Prefer bfloat16 if supported; else float16
|
24 |
+
if torch.cuda.is_bf16_supported():
|
25 |
+
return torch.bfloat16
|
26 |
+
return torch.float16
|
27 |
+
# CPU
|
28 |
+
return torch.float32
|
29 |
+
|
30 |
+
|
31 |
+
@app.on_event("startup")
|
32 |
+
def load_model():
|
33 |
+
global tokenizer, model
|
34 |
+
dtype = get_dtype()
|
35 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, use_fast=True, trust_remote_code=True)
|
36 |
+
model = AutoModelForCausalLM.from_pretrained(
|
37 |
+
MODEL_ID,
|
38 |
+
torch_dtype=dtype,
|
39 |
+
device_map="auto",
|
40 |
+
trust_remote_code=True,
|
41 |
+
)
|
42 |
+
# Ensure eos/bos tokens exist
|
43 |
+
if tokenizer.eos_token is None:
|
44 |
+
tokenizer.eos_token = tokenizer.sep_token or tokenizer.pad_token or "</s>"
|
45 |
+
if tokenizer.pad_token is None:
|
46 |
+
tokenizer.pad_token = tokenizer.eos_token
|
47 |
+
|
48 |
+
|
49 |
+
class ChatMessage(BaseModel):
|
50 |
+
role: str
|
51 |
+
content: str
|
52 |
+
|
53 |
+
|
54 |
+
class ChatCompletionRequest(BaseModel):
|
55 |
+
model: Optional[str] = Field(default=MODEL_ID)
|
56 |
+
messages: List[ChatMessage]
|
57 |
+
temperature: Optional[float] = 0.7
|
58 |
+
top_p: Optional[float] = 0.95
|
59 |
+
max_tokens: Optional[int] = None
|
60 |
+
stop: Optional[List[str] | str] = None
|
61 |
+
n: Optional[int] = 1
|
62 |
+
|
63 |
+
|
64 |
+
class CompletionRequest(BaseModel):
|
65 |
+
model: Optional[str] = Field(default=MODEL_ID)
|
66 |
+
prompt: str | List[str]
|
67 |
+
temperature: Optional[float] = 0.7
|
68 |
+
top_p: Optional[float] = 0.95
|
69 |
+
max_tokens: Optional[int] = None
|
70 |
+
stop: Optional[List[str] | str] = None
|
71 |
+
n: Optional[int] = 1
|
72 |
+
|
73 |
+
|
74 |
+
class Usage(BaseModel):
|
75 |
+
prompt_tokens: int
|
76 |
+
completion_tokens: int
|
77 |
+
total_tokens: int
|
78 |
+
|
79 |
+
|
80 |
+
# Simple chat prompt formatter
|
81 |
+
|
82 |
+
def build_chat_prompt(messages: List[ChatMessage]) -> str:
|
83 |
+
system_prefix = "You are a helpful assistant."
|
84 |
+
system_msgs = [m.content for m in messages if m.role == "system"]
|
85 |
+
if system_msgs:
|
86 |
+
system_prefix = system_msgs[-1]
|
87 |
+
|
88 |
+
conv: List[str] = [f"System: {system_prefix}"]
|
89 |
+
for m in messages:
|
90 |
+
if m.role == "system":
|
91 |
+
continue
|
92 |
+
role = "User" if m.role == "user" else ("Assistant" if m.role == "assistant" else m.role.capitalize())
|
93 |
+
conv.append(f"{role}: {m.content}")
|
94 |
+
conv.append("Assistant:")
|
95 |
+
return "\n".join(conv)
|
96 |
+
|
97 |
+
|
98 |
+
def apply_stop_sequences(text: str, stop: Optional[List[str] | str]) -> str:
|
99 |
+
if stop is None:
|
100 |
+
return text
|
101 |
+
stops = stop if isinstance(stop, list) else [stop]
|
102 |
+
cut = len(text)
|
103 |
+
for s in stops:
|
104 |
+
if not s:
|
105 |
+
continue
|
106 |
+
idx = text.find(s)
|
107 |
+
if idx != -1:
|
108 |
+
cut = min(cut, idx)
|
109 |
+
return text[:cut]
|
110 |
+
|
111 |
+
|
112 |
+
def generate_once(prompt: str, temperature: float, top_p: float, max_new_tokens: int) -> Dict[str, Any]:
|
113 |
+
assert tokenizer is not None and model is not None, "Model not loaded"
|
114 |
+
|
115 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
116 |
+
gen_ids = model.generate(
|
117 |
+
**inputs,
|
118 |
+
max_new_tokens=max_new_tokens,
|
119 |
+
do_sample=True if temperature and temperature > 0 else False,
|
120 |
+
temperature=max(0.0, float(temperature or 0.0)),
|
121 |
+
top_p=max(0.0, float(top_p or 1.0)),
|
122 |
+
pad_token_id=tokenizer.pad_token_id,
|
123 |
+
eos_token_id=tokenizer.eos_token_id,
|
124 |
+
)
|
125 |
+
out = tokenizer.decode(gen_ids[0][inputs["input_ids"].shape[-1]:], skip_special_tokens=True)
|
126 |
+
return {
|
127 |
+
"text": out,
|
128 |
+
"prompt_tokens": inputs["input_ids"].numel(),
|
129 |
+
"completion_tokens": gen_ids[0].shape[0] - inputs["input_ids"].shape[-1],
|
130 |
+
}
|
131 |
+
|
132 |
+
|
133 |
+
@app.get("/")
|
134 |
+
def root():
|
135 |
+
return RedirectResponse(url="/docs")
|
136 |
+
|
137 |
+
|
138 |
+
@app.get("/health")
|
139 |
+
def health():
|
140 |
+
return {"status": "ok", "model": MODEL_ID}
|
141 |
+
|
142 |
+
|
143 |
+
@app.post("/v1/chat/completions")
|
144 |
+
def chat_completions(req: ChatCompletionRequest):
|
145 |
+
if req.n and req.n > 1:
|
146 |
+
raise HTTPException(status_code=400, detail="Only n=1 is supported in this simple server.")
|
147 |
+
max_new = req.max_tokens or DEFAULT_MAX_TOKENS
|
148 |
+
|
149 |
+
prompt = build_chat_prompt(req.messages)
|
150 |
+
g = generate_once(prompt, req.temperature or 0.7, req.top_p or 0.95, max_new)
|
151 |
+
text = apply_stop_sequences(g["text"], req.stop)
|
152 |
+
|
153 |
+
created = int(time.time())
|
154 |
+
comp_id = f"chatcmpl-{uuid.uuid4().hex[:24]}"
|
155 |
+
|
156 |
+
usage = Usage(
|
157 |
+
prompt_tokens=g["prompt_tokens"],
|
158 |
+
completion_tokens=g["completion_tokens"],
|
159 |
+
total_tokens=g["prompt_tokens"] + g["completion_tokens"],
|
160 |
+
)
|
161 |
+
|
162 |
+
return {
|
163 |
+
"id": comp_id,
|
164 |
+
"object": "chat.completion",
|
165 |
+
"created": created,
|
166 |
+
"model": req.model or MODEL_ID,
|
167 |
+
"choices": [
|
168 |
+
{
|
169 |
+
"index": 0,
|
170 |
+
"message": {"role": "assistant", "content": text},
|
171 |
+
"finish_reason": "stop",
|
172 |
+
}
|
173 |
+
],
|
174 |
+
"usage": usage.dict(),
|
175 |
+
}
|
176 |
+
|
177 |
+
|
178 |
+
@app.post("/v1/completions")
|
179 |
+
def completions(req: CompletionRequest):
|
180 |
+
if req.n and req.n > 1:
|
181 |
+
raise HTTPException(status_code=400, detail="Only n=1 is supported in this simple server.")
|
182 |
+
|
183 |
+
prompts = req.prompt if isinstance(req.prompt, list) else [req.prompt]
|
184 |
+
if len(prompts) != 1:
|
185 |
+
raise HTTPException(status_code=400, detail="Only a single prompt is supported in this simple server.")
|
186 |
+
|
187 |
+
max_new = req.max_tokens or DEFAULT_MAX_TOKENS
|
188 |
+
|
189 |
+
g = generate_once(prompts[0], req.temperature or 0.7, req.top_p or 0.95, max_new)
|
190 |
+
text = apply_stop_sequences(g["text"], req.stop)
|
191 |
+
|
192 |
+
created = int(time.time())
|
193 |
+
comp_id = f"cmpl-{uuid.uuid4().hex[:24]}"
|
194 |
+
|
195 |
+
usage = Usage(
|
196 |
+
prompt_tokens=g["prompt_tokens"],
|
197 |
+
completion_tokens=g["completion_tokens"],
|
198 |
+
total_tokens=g["prompt_tokens"] + g["completion_tokens"],
|
199 |
+
)
|
200 |
+
|
201 |
+
return {
|
202 |
+
"id": comp_id,
|
203 |
+
"object": "text_completion",
|
204 |
+
"created": created,
|
205 |
+
"model": req.model or MODEL_ID,
|
206 |
+
"choices": [
|
207 |
+
{
|
208 |
+
"index": 0,
|
209 |
+
"text": text,
|
210 |
+
"finish_reason": "stop",
|
211 |
+
"logprobs": None,
|
212 |
+
}
|
213 |
+
],
|
214 |
+
"usage": usage.dict(),
|
215 |
+
}
|
216 |
+
|
217 |
+
|
218 |
+
if __name__ == "__main__":
|
219 |
+
import uvicorn
|
220 |
+
|
221 |
+
port = int(os.getenv("PORT", "7860"))
|
222 |
+
uvicorn.run("app:app", host="0.0.0.0", port=port, reload=False)
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi>=0.110.0
|
2 |
+
uvicorn>=0.29.0
|
3 |
+
transformers>=4.41.0
|
4 |
+
torch
|
5 |
+
accelerate>=0.30.0
|
6 |
+
sentencepiece>=0.2.0
|
7 |
+
safetensors>=0.4.3
|
8 |
+
pydantic>=2.5.0
|