Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 2,365 Bytes
34a2915 0061e14 5048713 34a2915 0061e14 7d20cd0 34a2915 0061e14 7d20cd0 e00a798 7d20cd0 0061e14 34a2915 0061e14 34a2915 0061e14 7d20cd0 34a2915 0061e14 7d20cd0 0061e14 61885ca 0061e14 61885ca 0061e14 7d20cd0 0061e14 5048713 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
from dataclasses import dataclass
from enum import Enum
def fields(raw_class):
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
# These classes are for user facing column names, to avoid having to change them
# all around the code when a modification is needed.
@dataclass
class ColumnContent:
name: str
type: str
displayed_by_default: bool
hidden: bool = False
never_hidden: bool = False
@dataclass(frozen=True)
class AutoEvalColumn:
system = ColumnContent("System Name", "markdown", True, never_hidden=True)
system_type = ColumnContent("System Type", "str", True)
organization = ColumnContent("Organization", "str", True, never_hidden=True)
success_rate = ColumnContent("Success Rate (%)", "number", True)
problems_solved = ColumnContent("Problems Solved", "number", True)
submitted_on = ColumnContent("Submitted On", "datetime", True)
# For the queue columns in the submission tab
@dataclass(frozen=True)
class EvalQueueColumn: # Queue column
model = ColumnContent("model", "markdown", True)
revision = ColumnContent("revision", "str", True)
private = ColumnContent("private", "bool", True)
precision = ColumnContent("precision", "str", True)
weight_type = ColumnContent("weight_type", "str", True)
status = ColumnContent("status", "str", True)
# All the model information that we might need
@dataclass
class ModelDetails:
name: str
display_name: str = ""
symbol: str = "" # emoji
class ModelType(Enum):
LLM = ModelDetails(name="LLM", symbol="🟢")
AgenticLLM = ModelDetails(name="AgenticLLM", symbol="🔶")
Other = ModelDetails(name="Other", symbol="?")
def to_str(self, separator=" "):
return f"{self.value.symbol}{separator}{self.value.name}"
@staticmethod
def from_str(type):
if "AgenticLLM" in type or "🔶" in type:
return ModelType.AgenticLLM
if "LLM" in type or "🟢" in type:
return ModelType.LLM
return ModelType.Other
class Precision(Enum):
float16 = ModelDetails("float16")
bfloat16 = ModelDetails("bfloat16")
Unknown = ModelDetails("?")
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
|