Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 7,238 Bytes
0061e14 416ebf1 7d20cd0 5048713 416ebf1 c887522 0061e14 416ebf1 ed67886 416ebf1 c887522 5048713 0061e14 ed67886 0061e14 5048713 b74992f 7d20cd0 0061e14 7d20cd0 5048713 e00a798 ed67886 c887522 416ebf1 7d20cd0 416ebf1 7d20cd0 0061e14 cc4e1bd b7f5578 0061e14 7d20cd0 0061e14 5604365 ed67886 0061e14 0135bb2 0061e14 61885ca 8cfcd49 61885ca 8cfcd49 61885ca a0c6131 0061e14 61885ca a6c3f26 0061e14 7d20cd0 5048713 b74992f 5048713 b74992f 7d20cd0 0061e14 a2f273a 0061e14 61885ca a0c6131 0061e14 1ab182d daa3ab0 0135bb2 0061e14 1ab182d 0061e14 1ab182d f8117b4 1ab182d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from gradio_leaderboard import ColumnFilter, Leaderboard, SelectColumns
from display.formatting import styled_error
from src.about import CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, EVALUATION_QUEUE_TEXT, INTRODUCTION_TEXT, TITLE
from src.datamodel.data import F1Data
from src.display.css_html_js import custom_css
from src.display.utils import AutoEvalColumn, ModelType, fields
from src.envs import API, CODE_PROBLEMS_REPO, REPO_ID, RESULTS_REPO, SUBMISSIONS_REPO
from src.logger import get_logger
from src.populate import get_leaderboard_df
from src.submission.submit import add_new_solutions
from src.validation.validate import MAX_INPUT_LENGTH, MIN_INPUT_LENGTH, is_submission_file_valid, is_valid
logger = get_logger(__name__)
ENSURE_ALL_PRESENT = False # TODO: Switch to True.
SPLIT = "warmup" # TODO temp
def restart_space():
API.restart_space(repo_id=REPO_ID)
lbdb = F1Data(
cp_ds_name=CODE_PROBLEMS_REPO,
sub_ds_name=SUBMISSIONS_REPO,
res_ds_name=RESULTS_REPO,
split=SPLIT,
)
leaderboard_df = get_leaderboard_df(RESULTS_REPO)
logger.info("Initialized LBDB")
def init_leaderboard(dataframe: pd.DataFrame):
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
return Leaderboard(
value=dataframe,
datatype=[c.type for c in fields(AutoEvalColumn)],
select_columns=SelectColumns(
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
label="Select Columns to Display:",
),
search_columns=[AutoEvalColumn.system.name, AutoEvalColumn.system_type.name],
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
filter_columns=[
ColumnFilter(AutoEvalColumn.system_type.name, type="checkboxgroup", label="Model types"),
],
bool_checkboxgroup_label="Hide models",
interactive=False,
)
demo = gr.Blocks(css=custom_css)
with demo:
gr.Image(
"assets/banner.png",
interactive=False,
show_label=False,
show_download_button=False,
container=False,
)
gr.HTML(
"""
<style>
body {
background-color: #121212;
color: white;
margin: 0; /* Reset browser default */
}
/* Outer container margin & spacing */
.gradio-container {
max-width: 1100px;
margin: 2rem auto; /* top/bottom spacing + horizontal centering */
padding: 2rem; /* inner spacing */
background-color: rgba(0, 0, 0, 0.6); /* optional: semi-transparent panel */
border-radius: 12px; /* rounded corners */
}
</style>
"""
)
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π
FormulaOne Leaderboard", elem_id="formulaone-leaderboar-tab-table", id=0):
leaderboard = init_leaderboard(leaderboard_df)
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=2):
logger.info("Tab submission")
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Row():
gr.Markdown("# βοΈβ¨ Submit your solutions here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
system_name_textbox = gr.Textbox(label=AutoEvalColumn.system.name)
org_textbox = gr.Textbox(label=AutoEvalColumn.organization.name)
sys_type_dropdown = gr.Dropdown(
choices=[t.to_str(" ") for t in ModelType],
label=AutoEvalColumn.system_type.name,
multiselect=False,
value=ModelType.LLM.to_str(" "),
interactive=True,
)
submission_file = gr.File(label="JSONL solutions file", file_types=[".jsonl"])
logger.info("Submit button")
submit_button = gr.Button("Submit")
submission_result = gr.Markdown()
def add_solution_cbk(
system_name: str,
org: str,
sys_type: str,
submission_path: str,
):
try:
# Validating the submission file.
if len(submission_path) == 0:
return styled_error("Please upload JSONL submission file.")
if not is_submission_file_valid(submission_path):
return styled_error("Failed to read JSONL submission file. Please try again later.")
# Validating all user-supplied arguments.
for val, val_name in [
(system_name, "System name"),
(org, "Organisation name"),
(sys_type, "System type"),
]:
if len(val) == 0:
return styled_error(f"Please fill in the '{val_name}' field.")
if not is_valid(val):
return styled_error(
f"{val_name} is invalid! Must only contain characters [a-zA-Z0-9], spaces, "
+ "or the special characters '-' and '.', and be of length between "
+ f"{MIN_INPUT_LENGTH} and {MAX_INPUT_LENGTH}."
)
except Exception:
logger.warning("Failed to process user submission", exc_info=True)
return styled_error("An error occurred. Please try again later.") # Intentionally vague.
return add_new_solutions(
lbdb,
system_name,
org,
sys_type,
submission_path,
ensure_all_present=ENSURE_ALL_PRESENT,
)
submit_button.click(
add_solution_cbk,
[
system_name_textbox,
org_textbox,
sys_type_dropdown,
submission_file,
],
submission_result,
)
with gr.Row():
logger.info("Citation")
with gr.Accordion(CITATION_BUTTON_LABEL, open=False):
gr.Code(
value=CITATION_BUTTON_TEXT.strip(),
elem_id="citation-block",
)
logger.info("Scheduler")
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
logger.info("Launch")
demo.queue(default_concurrency_limit=40).launch()
logger.info("Done")
|