File size: 3,931 Bytes
0061e14
 
 
c887522
0061e14
a3d4fda
c887522
0061e14
c887522
 
61885ca
c887522
053a0cd
c887522
 
 
 
 
 
 
053a0cd
 
a3d4fda
0940c68
61885ca
 
 
a3d4fda
 
 
 
 
 
 
 
8cfcd49
a3d4fda
 
 
 
c887522
 
61885ca
 
 
44a4b77
0061e14
61885ca
 
 
 
 
 
 
 
 
 
0061e14
c887522
 
0061e14
 
61885ca
c887522
 
0061e14
61885ca
a3d4fda
 
0061e14
61885ca
 
0061e14
 
61885ca
c887522
 
 
61885ca
 
 
c887522
 
 
61885ca
c887522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0061e14
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import json
import os
from datetime import datetime, timezone
import time

from datasets import Dataset
import pandas as pd

from src.datamodel.data import F1Data
from src.display.formatting import styled_error, styled_message, styled_warning
from src.display.utils import ModelType
from src.envs import API, SUBMISSIONS_REPO, TOKEN
from src.logger import get_logger
# from src.submission.check_validity import (
#     already_submitted_models,
#     check_model_card,
#     get_model_size,
#     is_model_on_hub,
# )

logger = get_logger(__name__)

def validate_submission(lbdb: F1Data, pd_ds: pd.DataFrame) -> str | None:
    logger.info("Validating DS size %d columns %s set %s", len(pd_ds), pd_ds.columns, set(pd_ds.columns))
    expected_cols = ["formula_name", "solution"]
    if set(pd_ds.columns) != set(expected_cols):
        return f"Expected attributes: {expected_cols}, Got: {pd_ds.columns.tolist()}"
    if any(type(v) != str for v in pd_ds["formula_name"]):
        return "Not all formula_name values are of type str"
    if any(type(v) != str for v in pd_ds["solution"]):
        return "Not all solution values are of type str"
    submitted_formulas = set(pd_ds["formula_name"])
    if submitted_formulas != lbdb.code_problem_formulas:
        missing = lbdb.code_problem_formulas - submitted_formulas
        unknown = submitted_formulas - lbdb.code_problem_formulas
        return f"Mismatched formula names: {len(missing)} missing, {len(unknown)} unknown"
    if len(pd_ds) > len(lbdb.code_problem_formulas):
        return "Duplicate formula solutions exist in uploaded file"
    return None

def add_new_solutions(
    lbdb: F1Data,
    system_name : str,
    org: str,
    sys_type: str,
    submission_path: str,
):
    logger.info("ADD SUBMISSION! %s path %s", str((system_name, org, sys_type)), submission_path)
    if not system_name:
        return styled_error("Please fill system name")

    if not org:
        return styled_error("Please fill organization name")

    if not sys_type:
        return styled_error("Please select system type")
    sys_type = ModelType.from_str(sys_type).name

    if not submission_path:
        return styled_error("Please upload JSONL solutions file")

    try:
        submission_df = pd.read_json(submission_path, lines=True)
    except Exception as e:
        return styled_error(f"Cannot read uploaded JSONL file: {str(e)}")

    validation_error = validate_submission(lbdb, submission_df)
    if validation_error:
        return styled_error(validation_error)


    submission_id = f"{system_name}_{org}_{sys_type}_{datetime.now(timezone.utc).strftime('%Y%m%d_%H%M%S')}"

    # Seems good, creating the eval
    print(f"Adding new submission: {submission_id}")
    submission_ts = time.time_ns()

    def add_info(row):
        row["system_name"] = system_name
        row["organization"] = org
        row["system_type"] = sys_type
        row["submission_id"] = submission_id
        row["submission_ts"] = submission_ts

    ds = Dataset.from_pandas(submission_df).map(add_info)

    ds.push_to_hub(SUBMISSIONS_REPO, submission_id, private=True)
    # print("Creating eval file")
    # OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
    # os.makedirs(OUT_DIR, exist_ok=True)
    # out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"

    # with open(out_path, "w") as f:
    #     f.write(json.dumps(eval_entry))

    # print("Uploading eval file")
    # API.upload_file(
    #     path_or_fileobj=out_path,
    #     path_in_repo=out_path.split("eval-queue/")[1],
    #     repo_id=QUEUE_REPO,
    #     repo_type="dataset",
    #     commit_message=f"Add {model} to eval queue",
    # )

    # # Remove the local file
    # os.remove(out_path)

    return styled_message(
        "Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
    )