File size: 6,430 Bytes
c887522
d59421c
7ded1c5
 
0061e14
c887522
d59421c
9a983a8
416ebf1
7ded1c5
0061e14
c887522
416ebf1
61885ca
d59421c
053a0cd
48e85fc
80fb2c0
d59421c
053a0cd
 
0d0a5ca
d59421c
80fb2c0
c887522
 
d59421c
4788cde
80fb2c0
61885ca
 
44a4b77
6446f53
68e6b55
0061e14
d59421c
98deb78
 
 
 
 
 
9a983a8
 
 
 
 
b37e7d1
 
d59421c
 
4788cde
 
d59421c
 
 
ad7fdeb
 
d59421c
4788cde
d59421c
 
 
 
 
 
 
 
 
debcc70
d59421c
 
 
 
 
 
5048713
d59421c
5048713
61885ca
5048713
 
 
6446f53
61885ca
 
0061e14
 
61885ca
5048713
 
 
 
 
 
 
0061e14
4788cde
0061e14
5048713
 
c887522
 
 
5f7ca36
 
 
 
 
 
 
a32c22a
91e9122
5f7ca36
c887522
61885ca
814f111
 
 
 
 
0061e14
 
34a2915
 
0061e14
7ded1c5
 
7722634
 
 
 
 
 
 
7bfe46e
 
7722634
26fc041
65e0342
26fc041
7722634
 
 
 
 
 
d55f513
 
7722634
 
 
7ded1c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import time
from datetime import datetime, timezone, timedelta
import os
import requests

import pandas as pd
from datasets import Dataset, get_dataset_config_names
from datasets.exceptions import DatasetNotFoundError
from pandas.api.types import is_integer_dtype
import gradio as gr

from src.datamodel.data import F1Data
from src.display.formatting import styled_error, styled_message
from src.display.utils import ModelType
from src.envs import SUBMISSIONS_REPO, TOKEN
from src.logger import get_logger
from src.validation.validate import is_submission_file_valid, is_valid


logger = get_logger(__name__)

MIN_WAIT_TIME_PER_USER_HRS = 24


def add_new_solutions(
    lbdb: F1Data,
    username: str,
    user_id: str,
    system_name: str,
    org: str,
    sys_type: str,
    submission_path: str,
    is_warmup_dataset: bool,
    ensure_all_present: bool = False,
):
    # Users must wait MIN_WAIT_TIME_PER_USER_HRS hours between submissions.

    from huggingface_hub import HfApi

    api = HfApi()
    logger.info(f"Who am I: {api.whoami(token=TOKEN)}")

    try:
        submitted_ids = get_dataset_config_names(SUBMISSIONS_REPO, token=TOKEN)
    except (DatasetNotFoundError, FileNotFoundError):
        submitted_ids = []

    logger.info(f"Found submitted IDs: {submitted_ids}")

    user_last_submission_date = None
    for sid in submitted_ids:
        # Extract user ID (last part)
        past_user_id = sid.rsplit("_", 1)[-1]
        # Extract timestamp string (first two parts)
        ts_str = "_".join(sid.split("_", 2)[:2])

        logger.info(f"Comparing past user: {past_user_id} with current user ID: {user_id}")

        ts = datetime.strptime(ts_str, "%Y%m%d_%H%M%S").replace(tzinfo=timezone.utc)
        if past_user_id == user_id:
            if user_last_submission_date is None:
                user_last_submission_date = ts
            else:
                user_last_submission_date = max(user_last_submission_date, ts)

    if user_last_submission_date is not None:
        now = datetime.now(timezone.utc)
        elapsed = now - user_last_submission_date
        if elapsed < timedelta(hours=MIN_WAIT_TIME_PER_USER_HRS):
            remaining_hrs = MIN_WAIT_TIME_PER_USER_HRS - elapsed.total_seconds() / 3600
            logger.info(f"{username} must wait {remaining_hrs:.2f} more hours.")
            return styled_error(
                f"You must wait {MIN_WAIT_TIME_PER_USER_HRS} hours between submissions. "
                f"Remaining wait time: {remaining_hrs:.2f} hours"
            )

    logger.info(
        f"Adding new submission: {system_name=}, {org=}, {sys_type=} and {submission_path=}",
    )

    # Double-checking.
    for val in [system_name, org, sys_type]:
        assert is_valid(val)
    assert is_submission_file_valid(submission_path, is_warmup_dataset=is_warmup_dataset)

    sys_type = ModelType.from_str(sys_type).name

    try:
        submission_df = pd.read_json(submission_path, lines=True)
        if ensure_all_present:
            _validate_all_submissions_present(lbdb=lbdb, pd_ds=submission_df)
    except Exception:
        logger.warning("Failed to parse submission DF!", exc_info=True)
        return styled_error(
            "An error occurred. Please try again later."
        )  # Use same message as external error. Avoid infoleak.

    submission_id = f"{datetime.now(timezone.utc).strftime('%Y%m%d_%H%M%S')}_{username}_{user_id}"

    # Seems good, creating the eval.
    logger.info(f"Adding new submission: {submission_id}")
    submission_ts = time.time_ns()

    def add_info(row):
        return {
            **row,
            "system_name": system_name,
            "organization": org,
            "system_type": sys_type,
            "submission_id": submission_id,
            "submission_ts": submission_ts,
            "evaluation_id": "",  # This will be set later when the evaluation is launched in the backend
            "evaluation_start_ts": "",  # This will be set when the evaluation starts
        }

    ds = Dataset.from_pandas(submission_df).map(add_info)
    ds.push_to_hub(
        SUBMISSIONS_REPO,
        submission_id,
        private=True,
    )

    return styled_message(
        "Your request has been submitted to the evaluation queue!\n"
        + "Results may take up to 24 hours to be processed and shown in the leaderboard."
    )


def fetch_sub_claim(oauth_token: gr.OAuthToken | None) -> dict | None:
    if oauth_token is None:
        return None
    provider = os.getenv("OPENID_PROVIDER_URL")
    if not provider:
        return None
    try:
        oidc_meta = requests.get(f"{provider}/.well-known/openid-configuration", timeout=5)
        oidc_meta = oidc_meta.json()
        userinfo_ep = oidc_meta["userinfo_endpoint"]
        claims = requests.get(userinfo_ep, headers={"Authorization": f"Bearer {oauth_token.token}"}, timeout=5)
        logger.info(f"userinfo_endpoint response: status={claims.status_code}\nheaders={dict(claims.headers)}")
        claims = claims.json()
        # Typical fields: sub (stable id), preferred_username, name, picture
        return {
            "sub": claims.get("sub"),
            "preferred_username": claims.get("preferred_username"),
            "name": claims.get("name"),
        }
    except Exception as e:
        logger.warning(f"Failed to fetch user claims: {e}")
        return None


def _validate_all_submissions_present(
    lbdb: F1Data,
    pd_ds: pd.DataFrame,
):
    logger.info(f"Validating DS size {len(pd_ds)} columns {pd_ds.columns} set {set(pd_ds.columns)}")
    expected_cols = ["problem_id", "solution"]

    if set(pd_ds.columns) != set(expected_cols):
        return ValueError(f"Expected attributes: {expected_cols}, Got: {pd_ds.columns.tolist()}")

    if not is_integer_dtype(pd_ds["problem_id"]):
        return ValueError("problem_id must be str convertible to int")

    if any(type(v) is not str for v in pd_ds["solution"]):
        return ValueError("solution must be of type str")

    submitted_ids = set(pd_ds.problem_id.astype(str))
    if submitted_ids != lbdb.code_problem_ids:
        missing = lbdb.code_problem_ids - submitted_ids
        unknown = submitted_ids - lbdb.code_problem_ids
        raise ValueError(f"Mismatched problem IDs: {len(missing)} missing, {len(unknown)} unknown")
    if len(pd_ds) > len(lbdb.code_problem_ids):
        return ValueError("Duplicate problem IDs exist in uploaded file")