Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
from functools import partial | |
import gradio as gr | |
# from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns | |
import pandas as pd | |
from apscheduler.schedulers.background import BackgroundScheduler | |
# from huggingface_hub import snapshot_download | |
from src.about import ( | |
CITATION_BUTTON_LABEL, | |
CITATION_BUTTON_TEXT, | |
EVALUATION_QUEUE_TEXT, | |
INTRODUCTION_TEXT, | |
LLM_BENCHMARKS_TEXT, | |
TITLE, | |
) | |
from src.datamodel.data import F1Data | |
from src.display.css_html_js import custom_css | |
# from src.display.utils import ( | |
# BENCHMARK_COLS, | |
# COLS, | |
# EVAL_COLS, | |
# EVAL_TYPES, | |
# AutoEvalColumn, | |
# ModelType, | |
# fields, | |
# WeightType, | |
# Precision | |
# ) | |
from src.envs import API, REPO_ID, TOKEN, CODE_PROBLEMS_REPO, SUBMISSIONS_REPO, RESULTS_REPO | |
from src.logger import get_logger | |
# from src.populate import get_evaluation_queue_df, get_leaderboard_df | |
from src.submission.submit import add_new_solutions | |
logger = get_logger(__name__) | |
def restart_space(): | |
API.restart_space(repo_id=REPO_ID) | |
lbdb = F1Data(cp_ds_name=CODE_PROBLEMS_REPO, sub_ds_name=SUBMISSIONS_REPO, res_ds_name=RESULTS_REPO) | |
logger.info("Initialized LBDB") | |
# ( | |
# finished_eval_queue_df, | |
# running_eval_queue_df, | |
# pending_eval_queue_df, | |
# ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) | |
# def init_leaderboard(dataframe): | |
# if dataframe is None or dataframe.empty: | |
# raise ValueError("Leaderboard DataFrame is empty or None.") | |
# return Leaderboard( | |
# value=dataframe, | |
# datatype=[c.type for c in fields(AutoEvalColumn)], | |
# select_columns=SelectColumns( | |
# default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default], | |
# cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden], | |
# label="Select Columns to Display:", | |
# ), | |
# search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name], | |
# hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden], | |
# filter_columns=[ | |
# ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"), | |
# ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"), | |
# ColumnFilter( | |
# AutoEvalColumn.params.name, | |
# type="slider", | |
# min=0.01, | |
# max=150, | |
# label="Select the number of parameters (B)", | |
# ), | |
# ColumnFilter( | |
# AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True | |
# ), | |
# ], | |
# bool_checkboxgroup_label="Hide models", | |
# interactive=False, | |
# ) | |
demo = gr.Blocks(css=custom_css) | |
with demo: | |
gr.HTML(TITLE) | |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
# with gr.TabItem("π LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0): | |
# leaderboard = init_leaderboard(LEADERBOARD_DF) | |
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2): | |
logger.info("Tab about") | |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3): | |
logger.info("Tab submission") | |
with gr.Column(): | |
with gr.Row(): | |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") | |
# with gr.Column(): | |
# with gr.Accordion( | |
# f"β Finished Evaluations ({len(finished_eval_queue_df)})", | |
# open=False, | |
# ): | |
# with gr.Row(): | |
# finished_eval_table = gr.components.Dataframe( | |
# value=finished_eval_queue_df, | |
# headers=EVAL_COLS, | |
# datatype=EVAL_TYPES, | |
# row_count=5, | |
# ) | |
# with gr.Accordion( | |
# f"π Running Evaluation Queue ({len(running_eval_queue_df)})", | |
# open=False, | |
# ): | |
# with gr.Row(): | |
# running_eval_table = gr.components.Dataframe( | |
# value=running_eval_queue_df, | |
# headers=EVAL_COLS, | |
# datatype=EVAL_TYPES, | |
# row_count=5, | |
# ) | |
# with gr.Accordion( | |
# f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})", | |
# open=False, | |
# ): | |
# with gr.Row(): | |
# pending_eval_table = gr.components.Dataframe( | |
# value=pending_eval_queue_df, | |
# headers=EVAL_COLS, | |
# datatype=EVAL_TYPES, | |
# row_count=5, | |
# ) | |
with gr.Row(): | |
gr.Markdown("# βοΈβ¨ Submit your sulutions here!", elem_classes="markdown-text") | |
with gr.Row(): | |
with gr.Column(): | |
submitter_textbox = gr.Textbox(label="Submitter") | |
# revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main") | |
# model_type = gr.Dropdown( | |
# choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown], | |
# label="Model type", | |
# multiselect=False, | |
# value=None, | |
# interactive=True, | |
# ) | |
# with gr.Column(): | |
# submission_file = gr.File(label="JSONL solutions file", file_types=[".jsonl"]) | |
# precision = gr.Dropdown( | |
# choices=[i.value.name for i in Precision if i != Precision.Unknown], | |
# label="Precision", | |
# multiselect=False, | |
# value="float16", | |
# interactive=True, | |
# ) | |
# weight_type = gr.Dropdown( | |
# choices=[i.value.name for i in WeightType], | |
# label="Weights type", | |
# multiselect=False, | |
# value="Original", | |
# interactive=True, | |
# ) | |
# base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)") | |
logger.info("Submut button") | |
submit_button = gr.Button("Submit") | |
submission_result = gr.Markdown() | |
def add_solution_cbk(submitter): | |
return add_new_solutions(lbdb, submitter, submission_path=None) | |
submit_button.click( | |
add_solution_cbk, | |
# partial(add_new_solutions, lbdb=lbdb, submission_path=None), | |
[ | |
submitter_textbox, | |
# submission_file, | |
], | |
submission_result, | |
) | |
with gr.Row(): | |
logger.info("Citation") | |
with gr.Accordion("π Citation", open=False): | |
citation_button = gr.Textbox( | |
value=CITATION_BUTTON_TEXT, | |
label=CITATION_BUTTON_LABEL, | |
lines=20, | |
elem_id="citation-button", | |
show_copy_button=True, | |
) | |
logger.info("Scheduler") | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(restart_space, "interval", seconds=1800) | |
scheduler.start() | |
logger.info("Launch") | |
demo.queue(default_concurrency_limit=40).launch() | |
logger.info("Done") | |