Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Updated.
Browse files- app.py +99 -29
- src/display/css_html_js.py +23 -0
app.py
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
|
3 |
import gradio as gr
|
4 |
import pandas as pd
|
5 |
-
import plotly.graph_objects as go
|
6 |
from apscheduler.schedulers.background import BackgroundScheduler
|
7 |
from gradio_leaderboard import Leaderboard, SelectColumns
|
8 |
from huggingface_hub import whoami
|
@@ -233,42 +233,96 @@ STATIC_RESULTS = {
|
|
233 |
},
|
234 |
}
|
235 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
236 |
|
237 |
def build_accuracy_figure(tier: str):
|
238 |
-
"""
|
239 |
-
results = STATIC_RESULTS.get(tier, {})
|
240 |
total = TIER_TOTALS[tier]
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
255 |
)
|
256 |
-
|
257 |
-
|
|
|
|
|
|
|
|
|
258 |
fig.update_layout(
|
259 |
template="plotly_white",
|
260 |
-
margin=dict(l=30, r=20, t=10, b=40),
|
261 |
-
yaxis=dict(title="# Problems Solved", range=[0, total], dtick=max(5, total // 10)),
|
262 |
-
xaxis=dict(title=None),
|
263 |
height=420,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
264 |
)
|
265 |
return fig
|
266 |
|
267 |
|
268 |
-
# Precompute initial figure (Warmup)
|
269 |
_initial_accuracy_fig = build_accuracy_figure("Warmup")
|
270 |
|
271 |
-
|
272 |
# Force light theme even if HF user prefers dark
|
273 |
blocks = gr.Blocks(
|
274 |
css=custom_css,
|
@@ -278,14 +332,13 @@ blocks = gr.Blocks(
|
|
278 |
with blocks:
|
279 |
|
280 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
281 |
-
|
282 |
-
with gr.TabItem("Model Accuracy on FormulaOne", id=0, elem_id="landing-accuracy-tab"):
|
283 |
gr.Markdown(
|
284 |
"The chart below summarizes static (non-live) results for model performance on FormulaOne.",
|
285 |
elem_classes="markdown-text",
|
286 |
)
|
287 |
|
288 |
-
#
|
289 |
with gr.Row(elem_id="f1-tier-select-row"):
|
290 |
tier_selector = gr.Radio(
|
291 |
choices=list(TIER_TOTALS.keys()),
|
@@ -295,15 +348,32 @@ with blocks:
|
|
295 |
elem_id="f1-tier-select",
|
296 |
)
|
297 |
|
298 |
-
accuracy_plot = gr.Plot(value=_initial_accuracy_fig)
|
299 |
|
300 |
-
# Wire selector → plot
|
301 |
tier_selector.change(
|
302 |
lambda t: build_accuracy_figure(t),
|
303 |
inputs=tier_selector,
|
304 |
outputs=accuracy_plot,
|
305 |
)
|
306 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
307 |
# Existing "What is FormulaOne" tab
|
308 |
with gr.TabItem("What is FormulaOne", id=1, elem_id="what-is-tab"):
|
309 |
|
|
|
2 |
|
3 |
import gradio as gr
|
4 |
import pandas as pd
|
5 |
+
import plotly.graph_objects as go
|
6 |
from apscheduler.schedulers.background import BackgroundScheduler
|
7 |
from gradio_leaderboard import Leaderboard, SelectColumns
|
8 |
from huggingface_hub import whoami
|
|
|
233 |
},
|
234 |
}
|
235 |
|
236 |
+
MODEL_RELEASES = {
|
237 |
+
"GPT-5": "2025-08-07",
|
238 |
+
"Gemini 2.5 Pro": "2025-03-25",
|
239 |
+
"Grok 4": "2025-07-09",
|
240 |
+
"Claude Opus 4": "2025-05-22",
|
241 |
+
"o3 Pro": "2025-06-10",
|
242 |
+
}
|
243 |
+
|
244 |
+
TIER_TOTALS = {"Warmup": 100, "Tier 1": 100, "Tier 2": 20}
|
245 |
+
MODELS_ORDER = ["GPT-5", "Gemini 2.5 Pro", "Grok 4", "Claude Opus 4", "o3 Pro"]
|
246 |
+
|
247 |
+
ACCURACY_PCT = {
|
248 |
+
"Warmup": {
|
249 |
+
"GPT-5": 38,
|
250 |
+
"Gemini 2.5 Pro": 35,
|
251 |
+
"Grok 4": 28,
|
252 |
+
"Claude Opus 4": 32,
|
253 |
+
"o3 Pro": 30,
|
254 |
+
},
|
255 |
+
"Tier 1": {
|
256 |
+
"GPT-5": 3,
|
257 |
+
"Gemini 2.5 Pro": 2,
|
258 |
+
"Grok 4": 1,
|
259 |
+
"Claude Opus 4": 2,
|
260 |
+
"o3 Pro": 2,
|
261 |
+
},
|
262 |
+
"Tier 2": {
|
263 |
+
"GPT-5": 0,
|
264 |
+
"Gemini 2.5 Pro": 0,
|
265 |
+
"Grok 4": 0,
|
266 |
+
"Claude Opus 4": 0,
|
267 |
+
"o3 Pro": 0,
|
268 |
+
},
|
269 |
+
}
|
270 |
+
|
271 |
|
272 |
def build_accuracy_figure(tier: str):
|
273 |
+
"""Interactive scatter: x = release date, y = accuracy (%). Hover shows solved/total."""
|
|
|
274 |
total = TIER_TOTALS[tier]
|
275 |
+
fig = go.Figure()
|
276 |
+
|
277 |
+
for model in MODELS_ORDER:
|
278 |
+
date_str = MODEL_RELEASES[model]
|
279 |
+
y = ACCURACY_PCT[tier][model]
|
280 |
+
solved = round(y * total / 100)
|
281 |
+
fig.add_trace(
|
282 |
+
go.Scatter(
|
283 |
+
x=[date_str],
|
284 |
+
y=[y],
|
285 |
+
mode="markers",
|
286 |
+
name=model,
|
287 |
+
marker=dict(size=12, line=dict(width=1)),
|
288 |
+
hovertemplate=(
|
289 |
+
f"<b>{model}</b><br>"
|
290 |
+
"Release: %{x|%b %d, %Y}<br>"
|
291 |
+
"Accuracy: %{y:.1f}%<br>"
|
292 |
+
f"Solved: {solved}/{total}"
|
293 |
+
"<extra></extra>"
|
294 |
+
),
|
295 |
)
|
296 |
+
)
|
297 |
+
|
298 |
+
# Comfortable y-range (dynamic ceiling for readability)
|
299 |
+
max_y = max(ACCURACY_PCT[tier].values()) or 1
|
300 |
+
upper = max(1, math.ceil(max_y * 1.25))
|
301 |
+
|
302 |
fig.update_layout(
|
303 |
template="plotly_white",
|
|
|
|
|
|
|
304 |
height=420,
|
305 |
+
margin=dict(l=30, r=120, t=10, b=40), # extra right room for legend
|
306 |
+
xaxis=dict(
|
307 |
+
title=None,
|
308 |
+
type="date",
|
309 |
+
tickformat="%b %Y",
|
310 |
+
showgrid=True,
|
311 |
+
),
|
312 |
+
yaxis=dict(
|
313 |
+
title="Accuracy (%)",
|
314 |
+
range=[0, upper],
|
315 |
+
dtick=max(1, upper // 5),
|
316 |
+
showgrid=True,
|
317 |
+
),
|
318 |
+
legend=dict(title="Models", orientation="v", y=1, x=1.02, yanchor="top"),
|
319 |
+
hovermode="closest",
|
320 |
)
|
321 |
return fig
|
322 |
|
323 |
|
|
|
324 |
_initial_accuracy_fig = build_accuracy_figure("Warmup")
|
325 |
|
|
|
326 |
# Force light theme even if HF user prefers dark
|
327 |
blocks = gr.Blocks(
|
328 |
css=custom_css,
|
|
|
332 |
with blocks:
|
333 |
|
334 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
335 |
+
with gr.TabItem("FormulaOne", id=0, elem_id="landing-accuracy-tab"):
|
|
|
336 |
gr.Markdown(
|
337 |
"The chart below summarizes static (non-live) results for model performance on FormulaOne.",
|
338 |
elem_classes="markdown-text",
|
339 |
)
|
340 |
|
341 |
+
# Pill-style selector aligned to the top-right
|
342 |
with gr.Row(elem_id="f1-tier-select-row"):
|
343 |
tier_selector = gr.Radio(
|
344 |
choices=list(TIER_TOTALS.keys()),
|
|
|
348 |
elem_id="f1-tier-select",
|
349 |
)
|
350 |
|
351 |
+
accuracy_plot = gr.Plot(value=_initial_accuracy_fig, elem_id="f1-accuracy-plot")
|
352 |
|
|
|
353 |
tier_selector.change(
|
354 |
lambda t: build_accuracy_figure(t),
|
355 |
inputs=tier_selector,
|
356 |
outputs=accuracy_plot,
|
357 |
)
|
358 |
|
359 |
+
# Footnote (sampling + prompt details)
|
360 |
+
gr.Markdown(
|
361 |
+
"""
|
362 |
+
<div class="f1-container">
|
363 |
+
<p class="f1-p" style="font-size:0.95rem;color:var(--f1-subtle);">
|
364 |
+
<em>Footnote.</em> All models were sampled with their highest available reasoning settings and a generous token budget.
|
365 |
+
We also used a diverse few-shot prompt that is highly supportive for these problems, covering many of the subtle
|
366 |
+
details inherent in the tasks (state design, invariants, and bag transformations).
|
367 |
+
</p>
|
368 |
+
</div>
|
369 |
+
""",
|
370 |
+
elem_classes="markdown-text",
|
371 |
+
)
|
372 |
+
|
373 |
+
# "Learn more" link to the explainer tab
|
374 |
+
gr.Markdown(
|
375 |
+
'<div class="f1-container"><p><a class="f1-a" href="#what-is-tab">Learn more about FormulaOne.</a></p></div>'
|
376 |
+
)
|
377 |
# Existing "What is FormulaOne" tab
|
378 |
with gr.TabItem("What is FormulaOne", id=1, elem_id="what-is-tab"):
|
379 |
|
src/display/css_html_js.py
CHANGED
@@ -21,6 +21,29 @@ custom_css = """
|
|
21 |
/* NEW: landing tab width + tier selector alignment */
|
22 |
#landing-accuracy-tab { max-width: 800px; margin-left: auto; margin-right: auto; }
|
23 |
#f1-tier-select-row { justify-content: flex-end; margin-bottom: 6px; }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
/* Text */
|
26 |
.f1-p, .f1-li { line-height: 1.75; color: #374151; text-wrap: pretty; overflow-wrap: break-word; hyphens: auto; }
|
|
|
21 |
/* NEW: landing tab width + tier selector alignment */
|
22 |
#landing-accuracy-tab { max-width: 800px; margin-left: auto; margin-right: auto; }
|
23 |
#f1-tier-select-row { justify-content: flex-end; margin-bottom: 6px; }
|
24 |
+
#f1-tier-select-row { justify-content: flex-end; margin-bottom: 6px; }
|
25 |
+
#f1-tier-select .wrap {
|
26 |
+
display: inline-flex;
|
27 |
+
gap: 6px;
|
28 |
+
padding: 4px;
|
29 |
+
background: #ffffff;
|
30 |
+
border: 1px solid var(--f1-border);
|
31 |
+
border-radius: 999px;
|
32 |
+
}
|
33 |
+
#f1-tier-select input[type="radio"] { display: none; }
|
34 |
+
#f1-tier-select label {
|
35 |
+
border: none;
|
36 |
+
border-radius: 999px;
|
37 |
+
padding: 6px 12px;
|
38 |
+
background: transparent;
|
39 |
+
cursor: pointer;
|
40 |
+
}
|
41 |
+
#f1-tier-select input[type="radio"]:checked + span {
|
42 |
+
background: #eef2ff; /* subtle non-white for selected pill */
|
43 |
+
border-radius: 999px;
|
44 |
+
padding: 6px 12px;
|
45 |
+
box-shadow: 0 1px 2px rgba(0,0,0,0.04);
|
46 |
+
}
|
47 |
|
48 |
/* Text */
|
49 |
.f1-p, .f1-li { line-height: 1.75; color: #374151; text-wrap: pretty; overflow-wrap: break-word; hyphens: auto; }
|