import pandas as pd from datasets import get_dataset_config_names, load_dataset from datasets.exceptions import DatasetNotFoundError from tqdm.auto import tqdm from src.display.utils import AutoEvalColumn from src.envs import TOKEN from src.logger import get_logger logger = get_logger(__name__) def get_leaderboard_df(results_dataset_name: str) -> pd.DataFrame: """ @brief Creates a dataframe from all the individual experiment results. """ try: configs = get_dataset_config_names( results_dataset_name, token=TOKEN, ) except (DatasetNotFoundError, FileNotFoundError): # Return an empty DataFrame with expected columns logger.warning("Failed to load configuration", exc_info=True) return pd.DataFrame( columns=[ "System Name", "System Type", "Organization", "Success Rate (%)", "Problems Solved", "Submitted On", ] ) rows = [] for submission_id in tqdm( configs, total=len(configs), desc="Processing Submission Results", ): submission_ds = load_dataset( results_dataset_name, submission_id, split="train", token=TOKEN, ) submission_df = pd.DataFrame(submission_ds) if submission_df.empty or "did_pass" not in submission_df.columns or submission_df.did_pass.isna().any(): logger.warning(f"Skipping {submission_id} due to invalid did_pass values") continue success_rate = 100 * submission_df["did_pass"].mean() num_solved = submission_df["did_pass"].sum() first_row = submission_df.iloc[0] rows.append( { "System Name": first_row["system_name"], "System Type": first_row["system_type"], "Organization": first_row["organization"], "Success Rate (%)": success_rate, "Problems Solved": num_solved, "Submitted On": pd.to_datetime(first_row["submission_ts"]).strftime("%Y-%m-%d %H:%M"), } ) full_df = pd.DataFrame(rows) # TODO: Forbid multiple submissions under the same name? # Keep only the latest entry per unique (System Name, System Type, Organization) triplet final_df = ( full_df.sort_values("Submitted On", ascending=False) .drop_duplicates(subset=["System Name", "System Type", "Organization"], keep="first") .sort_values(by=[AutoEvalColumn.success_rate.name], ascending=False) .reset_index(drop=True) ) cols_to_round = ["Success Rate (%)"] final_df[cols_to_round] = final_df[cols_to_round].round(decimals=2) return final_df