File size: 1,639 Bytes
8075387
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import logging
import numpy as np
import pycocotools.mask as mask_util
import torch
from fvcore.common.file_io import PathManager
from PIL import Image

from detectron2.structures import (
    BitMasks,
    Boxes,
    BoxMode,
    Instances,
    Keypoints,
    PolygonMasks,
    RotatedBoxes,
    polygons_to_bitmask,
)

from detectron2.data import transforms as T
from .transforms.custom_augmentation_impl import EfficientDetResizeCrop

def build_custom_augmentation(cfg, is_train):
    """
    Create a list of default :class:`Augmentation` from config.
    Now it includes resizing and flipping.

    Returns:
        list[Augmentation]
    """
    if cfg.INPUT.CUSTOM_AUG == 'ResizeShortestEdge':
        if is_train:
            min_size = cfg.INPUT.MIN_SIZE_TRAIN
            max_size = cfg.INPUT.MAX_SIZE_TRAIN
            sample_style = cfg.INPUT.MIN_SIZE_TRAIN_SAMPLING
        else:
            min_size = cfg.INPUT.MIN_SIZE_TEST
            max_size = cfg.INPUT.MAX_SIZE_TEST
            sample_style = "choice"
        augmentation = [T.ResizeShortestEdge(min_size, max_size, sample_style)]
    elif cfg.INPUT.CUSTOM_AUG == 'EfficientDetResizeCrop':
        if is_train:
            scale = cfg.INPUT.SCALE_RANGE
            size = cfg.INPUT.TRAIN_SIZE
        else:
            scale = (1, 1)
            size = cfg.INPUT.TEST_SIZE
        augmentation = [EfficientDetResizeCrop(size, scale)]
    else:
        assert 0, cfg.INPUT.CUSTOM_AUG

    if is_train:
        augmentation.append(T.RandomFlip())
    return augmentation


build_custom_transform_gen = build_custom_augmentation
"""
Alias for backward-compatibility.
"""