File size: 9,379 Bytes
8075387
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import copy
import logging
import numpy as np
import operator
import torch
import torch.utils.data
import json
from detectron2.utils.comm import get_world_size

from detectron2.data import samplers
from torch.utils.data.sampler import BatchSampler, Sampler
from detectron2.data.common import DatasetFromList, MapDataset
from detectron2.data.dataset_mapper import DatasetMapper
from detectron2.data.build import get_detection_dataset_dicts, build_batch_data_loader
from detectron2.data.samplers import TrainingSampler, RepeatFactorTrainingSampler
from detectron2.data.build import worker_init_reset_seed, print_instances_class_histogram
from detectron2.data.build import filter_images_with_only_crowd_annotations
from detectron2.data.build import filter_images_with_few_keypoints
from detectron2.data.build import check_metadata_consistency
from detectron2.data.catalog import MetadataCatalog, DatasetCatalog
from detectron2.utils import comm
import itertools
import math
from collections import defaultdict
from typing import Optional

# from .custom_build_augmentation import build_custom_augmentation

def build_custom_train_loader(cfg, mapper=None):
    """
    Modified from detectron2.data.build.build_custom_train_loader, but supports
    different samplers
    """
    source_aware = cfg.DATALOADER.SOURCE_AWARE
    if source_aware:
        dataset_dicts = get_detection_dataset_dicts_with_source(
            cfg.DATASETS.TRAIN,
            filter_empty=cfg.DATALOADER.FILTER_EMPTY_ANNOTATIONS,
            min_keypoints=cfg.MODEL.ROI_KEYPOINT_HEAD.MIN_KEYPOINTS_PER_IMAGE
            if cfg.MODEL.KEYPOINT_ON
            else 0,
            proposal_files=cfg.DATASETS.PROPOSAL_FILES_TRAIN if cfg.MODEL.LOAD_PROPOSALS else None,
        )
        sizes = [0 for _ in range(len(cfg.DATASETS.TRAIN))]
        for d in dataset_dicts:
            sizes[d['dataset_source']] += 1
        print('dataset sizes', sizes)
    else:
        dataset_dicts = get_detection_dataset_dicts(
            cfg.DATASETS.TRAIN,
            filter_empty=cfg.DATALOADER.FILTER_EMPTY_ANNOTATIONS,
            min_keypoints=cfg.MODEL.ROI_KEYPOINT_HEAD.MIN_KEYPOINTS_PER_IMAGE
            if cfg.MODEL.KEYPOINT_ON
            else 0,
            proposal_files=cfg.DATASETS.PROPOSAL_FILES_TRAIN if cfg.MODEL.LOAD_PROPOSALS else None,
        )
    dataset = DatasetFromList(dataset_dicts, copy=False)

    if mapper is None:
        assert 0
        # mapper = DatasetMapper(cfg, True)
    dataset = MapDataset(dataset, mapper)

    sampler_name = cfg.DATALOADER.SAMPLER_TRAIN
    logger = logging.getLogger(__name__)
    logger.info("Using training sampler {}".format(sampler_name))
    # TODO avoid if-else?
    if sampler_name == "TrainingSampler":
        sampler = TrainingSampler(len(dataset))
    elif sampler_name == "MultiDatasetSampler":
        assert source_aware
        sampler = MultiDatasetSampler(cfg, sizes, dataset_dicts)
    elif sampler_name == "RepeatFactorTrainingSampler":
        repeat_factors = RepeatFactorTrainingSampler.repeat_factors_from_category_frequency(
            dataset_dicts, cfg.DATALOADER.REPEAT_THRESHOLD
        )
        sampler = RepeatFactorTrainingSampler(repeat_factors)
    elif sampler_name == "ClassAwareSampler":
        sampler = ClassAwareSampler(dataset_dicts)
    else:
        raise ValueError("Unknown training sampler: {}".format(sampler_name))

    return build_batch_data_loader(
        dataset,
        sampler,
        cfg.SOLVER.IMS_PER_BATCH,
        aspect_ratio_grouping=cfg.DATALOADER.ASPECT_RATIO_GROUPING,
        num_workers=cfg.DATALOADER.NUM_WORKERS,
    )


class ClassAwareSampler(Sampler):
    def __init__(self, dataset_dicts, seed: Optional[int] = None):
        """
        Args:
            size (int): the total number of data of the underlying dataset to sample from
            seed (int): the initial seed of the shuffle. Must be the same
                across all workers. If None, will use a random seed shared
                among workers (require synchronization among all workers).
        """
        self._size = len(dataset_dicts)
        assert self._size > 0
        if seed is None:
            seed = comm.shared_random_seed()
        self._seed = int(seed)
        
        self._rank = comm.get_rank()
        self._world_size = comm.get_world_size()
        self.weights = self._get_class_balance_factor(dataset_dicts)


    def __iter__(self):
        start = self._rank
        yield from itertools.islice(
            self._infinite_indices(), start, None, self._world_size)


    def _infinite_indices(self):
        g = torch.Generator()
        g.manual_seed(self._seed)
        while True:
            ids = torch.multinomial(
                self.weights, self._size, generator=g, 
                replacement=True)
            yield from ids


    def _get_class_balance_factor(self, dataset_dicts, l=1.):
        # 1. For each category c, compute the fraction of images that contain it: f(c)
        ret = []
        category_freq = defaultdict(int)
        for dataset_dict in dataset_dicts:  # For each image (without repeats)
            cat_ids = {ann["category_id"] for ann in dataset_dict["annotations"]}
            for cat_id in cat_ids:
                category_freq[cat_id] += 1
        for i, dataset_dict in enumerate(dataset_dicts):
            cat_ids = {ann["category_id"] for ann in dataset_dict["annotations"]}
            ret.append(sum(
                [1. / (category_freq[cat_id] ** l) for cat_id in cat_ids]))
        return torch.tensor(ret).float()


def get_detection_dataset_dicts_with_source(
    dataset_names, filter_empty=True, min_keypoints=0, proposal_files=None
):
    assert len(dataset_names)
    dataset_dicts = [DatasetCatalog.get(dataset_name) for dataset_name in dataset_names]
    for dataset_name, dicts in zip(dataset_names, dataset_dicts):
        assert len(dicts), "Dataset '{}' is empty!".format(dataset_name)
    
    for source_id, (dataset_name, dicts) in \
        enumerate(zip(dataset_names, dataset_dicts)):
        assert len(dicts), "Dataset '{}' is empty!".format(dataset_name)
        for d in dicts:
            d['dataset_source'] = source_id

        if "annotations" in dicts[0]:
            try:
                class_names = MetadataCatalog.get(dataset_name).thing_classes
                check_metadata_consistency("thing_classes", dataset_name)
                print_instances_class_histogram(dicts, class_names)
            except AttributeError:  # class names are not available for this dataset
                pass

    assert proposal_files is None

    dataset_dicts = list(itertools.chain.from_iterable(dataset_dicts))

    has_instances = "annotations" in dataset_dicts[0]
    if filter_empty and has_instances:
        dataset_dicts = filter_images_with_only_crowd_annotations(dataset_dicts)
    if min_keypoints > 0 and has_instances:
        dataset_dicts = filter_images_with_few_keypoints(dataset_dicts, min_keypoints)

    return dataset_dicts

class MultiDatasetSampler(Sampler):
    def __init__(self, cfg, sizes, dataset_dicts, seed: Optional[int] = None):
        """
        Args:
            size (int): the total number of data of the underlying dataset to sample from
            seed (int): the initial seed of the shuffle. Must be the same
                across all workers. If None, will use a random seed shared
                among workers (require synchronization among all workers).
        """
        self.sizes = sizes
        dataset_ratio = cfg.DATALOADER.DATASET_RATIO
        self._batch_size = cfg.SOLVER.IMS_PER_BATCH
        assert len(dataset_ratio) == len(sizes), \
            'length of dataset ratio {} should be equal to number if dataset {}'.format(
                len(dataset_ratio), len(sizes)
            )
        if seed is None:
            seed = comm.shared_random_seed()
        self._seed = int(seed)
        self._rank = comm.get_rank()
        self._world_size = comm.get_world_size()
        
        self._ims_per_gpu = self._batch_size // self._world_size
        self.dataset_ids =  torch.tensor(
            [d['dataset_source'] for d in dataset_dicts], dtype=torch.long)

        dataset_weight = [torch.ones(s) * max(sizes) / s * r / sum(dataset_ratio) \
            for i, (r, s) in enumerate(zip(dataset_ratio, sizes))]
        dataset_weight = torch.cat(dataset_weight)
        self.weights = dataset_weight
        self.sample_epoch_size = len(self.weights)

    def __iter__(self):
        start = self._rank
        yield from itertools.islice(
            self._infinite_indices(), start, None, self._world_size)


    def _infinite_indices(self):
        g = torch.Generator()
        g.manual_seed(self._seed)
        while True:
            ids = torch.multinomial(
                self.weights, self.sample_epoch_size, generator=g, 
                replacement=True)
            nums = [(self.dataset_ids[ids] == i).sum().int().item() \
                for i in range(len(self.sizes))]
            print('_rank, len, nums', self._rank, len(ids), nums, flush=True)
            # print('_rank, len, nums, self.dataset_ids[ids[:10]], ', 
            #     self._rank, len(ids), nums, self.dataset_ids[ids[:10]], 
            #     flush=True)
            yield from ids