Spaces:
Runtime error
Runtime error
File size: 17,423 Bytes
8075387 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# this file is from https://github.com/ucbdrive/dla/blob/master/dla.py.
import math
from os.path import join
import numpy as np
import torch
from torch import nn
import torch.utils.model_zoo as model_zoo
import torch.nn.functional as F
import fvcore.nn.weight_init as weight_init
from detectron2.modeling.backbone import FPN
from detectron2.layers import ShapeSpec, ModulatedDeformConv, Conv2d
from detectron2.modeling.backbone.build import BACKBONE_REGISTRY
from detectron2.layers.batch_norm import get_norm
from detectron2.modeling.backbone import Backbone
WEB_ROOT = 'http://dl.yf.io/dla/models'
def get_model_url(data, name, hash):
return join(
'http://dl.yf.io/dla/models', data, '{}-{}.pth'.format(name, hash))
def conv3x3(in_planes, out_planes, stride=1):
"3x3 convolution with padding"
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
class BasicBlock(nn.Module):
def __init__(self, cfg, inplanes, planes, stride=1, dilation=1):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3,
stride=stride, padding=dilation,
bias=False, dilation=dilation)
self.bn1 = get_norm(cfg.MODEL.DLA.NORM, planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
stride=1, padding=dilation,
bias=False, dilation=dilation)
self.bn2 = get_norm(cfg.MODEL.DLA.NORM, planes)
self.stride = stride
def forward(self, x, residual=None):
if residual is None:
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out += residual
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 2
def __init__(self, cfg, inplanes, planes, stride=1, dilation=1):
super(Bottleneck, self).__init__()
expansion = Bottleneck.expansion
bottle_planes = planes // expansion
self.conv1 = nn.Conv2d(inplanes, bottle_planes,
kernel_size=1, bias=False)
self.bn1 = get_norm(cfg.MODEL.DLA.NORM, bottle_planes)
self.conv2 = nn.Conv2d(bottle_planes, bottle_planes, kernel_size=3,
stride=stride, padding=dilation,
bias=False, dilation=dilation)
self.bn2 = get_norm(cfg.MODEL.DLA.NORM, bottle_planes)
self.conv3 = nn.Conv2d(bottle_planes, planes,
kernel_size=1, bias=False)
self.bn3 = get_norm(cfg.MODEL.DLA.NORM, planes)
self.relu = nn.ReLU(inplace=True)
self.stride = stride
def forward(self, x, residual=None):
if residual is None:
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
out += residual
out = self.relu(out)
return out
class Root(nn.Module):
def __init__(self, cfg, in_channels, out_channels, kernel_size, residual):
super(Root, self).__init__()
self.conv = nn.Conv2d(
in_channels, out_channels, kernel_size,
stride=1, bias=False, padding=(kernel_size - 1) // 2)
self.bn = get_norm(cfg.MODEL.DLA.NORM, out_channels)
self.relu = nn.ReLU(inplace=True)
self.residual = residual
def forward(self, *x):
children = x
x = self.conv(torch.cat(x, 1))
x = self.bn(x)
if self.residual:
x += children[0]
x = self.relu(x)
return x
class Tree(nn.Module):
def __init__(self, cfg, levels, block, in_channels, out_channels, stride=1,
level_root=False, root_dim=0, root_kernel_size=1,
dilation=1, root_residual=False):
super(Tree, self).__init__()
if root_dim == 0:
root_dim = 2 * out_channels
if level_root:
root_dim += in_channels
if levels == 1:
self.tree1 = block(cfg, in_channels, out_channels, stride,
dilation=dilation)
self.tree2 = block(cfg, out_channels, out_channels, 1,
dilation=dilation)
else:
self.tree1 = Tree(cfg, levels - 1, block, in_channels, out_channels,
stride, root_dim=0,
root_kernel_size=root_kernel_size,
dilation=dilation, root_residual=root_residual)
self.tree2 = Tree(cfg, levels - 1, block, out_channels, out_channels,
root_dim=root_dim + out_channels,
root_kernel_size=root_kernel_size,
dilation=dilation, root_residual=root_residual)
if levels == 1:
self.root = Root(cfg, root_dim, out_channels, root_kernel_size,
root_residual)
self.level_root = level_root
self.root_dim = root_dim
self.downsample = None
self.project = None
self.levels = levels
if stride > 1:
self.downsample = nn.MaxPool2d(stride, stride=stride)
if in_channels != out_channels:
self.project = nn.Sequential(
nn.Conv2d(in_channels, out_channels,
kernel_size=1, stride=1, bias=False),
get_norm(cfg.MODEL.DLA.NORM, out_channels)
)
def forward(self, x, residual=None, children=None):
if self.training and residual is not None:
x = x + residual.sum() * 0.0
children = [] if children is None else children
bottom = self.downsample(x) if self.downsample else x
residual = self.project(bottom) if self.project else bottom
if self.level_root:
children.append(bottom)
x1 = self.tree1(x, residual)
if self.levels == 1:
x2 = self.tree2(x1)
x = self.root(x2, x1, *children)
else:
children.append(x1)
x = self.tree2(x1, children=children)
return x
class DLA(Backbone):
def __init__(self, cfg, levels, channels, block=BasicBlock, residual_root=False):
super(DLA, self).__init__()
self.cfg = cfg
self.channels = channels
self._out_features = ["dla{}".format(i) for i in range(6)]
self._out_feature_channels = {k: channels[i] for i, k in enumerate(self._out_features)}
self._out_feature_strides = {k: 2 ** i for i, k in enumerate(self._out_features)}
self.base_layer = nn.Sequential(
nn.Conv2d(3, channels[0], kernel_size=7, stride=1,
padding=3, bias=False),
get_norm(cfg.MODEL.DLA.NORM, channels[0]),
nn.ReLU(inplace=True))
self.level0 = self._make_conv_level(
channels[0], channels[0], levels[0])
self.level1 = self._make_conv_level(
channels[0], channels[1], levels[1], stride=2)
self.level2 = Tree(cfg, levels[2], block, channels[1], channels[2], 2,
level_root=False,
root_residual=residual_root)
self.level3 = Tree(cfg, levels[3], block, channels[2], channels[3], 2,
level_root=True, root_residual=residual_root)
self.level4 = Tree(cfg, levels[4], block, channels[3], channels[4], 2,
level_root=True, root_residual=residual_root)
self.level5 = Tree(cfg, levels[5], block, channels[4], channels[5], 2,
level_root=True, root_residual=residual_root)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
self.load_pretrained_model(
data='imagenet', name='dla34', hash='ba72cf86')
def load_pretrained_model(self, data, name, hash):
model_url = get_model_url(data, name, hash)
model_weights = model_zoo.load_url(model_url)
del model_weights['fc.weight']
del model_weights['fc.bias']
print('Loading pretrained DLA!')
self.load_state_dict(model_weights, strict=True)
def _make_conv_level(self, inplanes, planes, convs, stride=1, dilation=1):
modules = []
for i in range(convs):
modules.extend([
nn.Conv2d(inplanes, planes, kernel_size=3,
stride=stride if i == 0 else 1,
padding=dilation, bias=False, dilation=dilation),
get_norm(self.cfg.MODEL.DLA.NORM, planes),
nn.ReLU(inplace=True)])
inplanes = planes
return nn.Sequential(*modules)
def forward(self, x):
y = {}
x = self.base_layer(x)
for i in range(6):
name = 'level{}'.format(i)
x = getattr(self, name)(x)
y['dla{}'.format(i)] = x
return y
def fill_up_weights(up):
w = up.weight.data
f = math.ceil(w.size(2) / 2)
c = (2 * f - 1 - f % 2) / (2. * f)
for i in range(w.size(2)):
for j in range(w.size(3)):
w[0, 0, i, j] = \
(1 - math.fabs(i / f - c)) * (1 - math.fabs(j / f - c))
for c in range(1, w.size(0)):
w[c, 0, :, :] = w[0, 0, :, :]
class Conv(nn.Module):
def __init__(self, chi, cho, norm):
super(Conv, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(chi, cho, kernel_size=1, stride=1, bias=False),
get_norm(norm, cho),
nn.ReLU(inplace=True))
def forward(self, x):
return self.conv(x)
class DeformConv(nn.Module):
def __init__(self, chi, cho, norm):
super(DeformConv, self).__init__()
self.actf = nn.Sequential(
get_norm(norm, cho),
nn.ReLU(inplace=True)
)
self.offset = Conv2d(
chi, 27, kernel_size=3, stride=1,
padding=1, dilation=1)
self.conv = ModulatedDeformConv(
chi, cho, kernel_size=3, stride=1, padding=1,
dilation=1, deformable_groups=1)
nn.init.constant_(self.offset.weight, 0)
nn.init.constant_(self.offset.bias, 0)
def forward(self, x):
offset_mask = self.offset(x)
offset_x, offset_y, mask = torch.chunk(offset_mask, 3, dim=1)
offset = torch.cat((offset_x, offset_y), dim=1)
mask = mask.sigmoid()
x = self.conv(x, offset, mask)
x = self.actf(x)
return x
class IDAUp(nn.Module):
def __init__(self, o, channels, up_f, norm='FrozenBN', node_type=Conv):
super(IDAUp, self).__init__()
for i in range(1, len(channels)):
c = channels[i]
f = int(up_f[i])
proj = node_type(c, o, norm)
node = node_type(o, o, norm)
up = nn.ConvTranspose2d(o, o, f * 2, stride=f,
padding=f // 2, output_padding=0,
groups=o, bias=False)
fill_up_weights(up)
setattr(self, 'proj_' + str(i), proj)
setattr(self, 'up_' + str(i), up)
setattr(self, 'node_' + str(i), node)
def forward(self, layers, startp, endp):
for i in range(startp + 1, endp):
upsample = getattr(self, 'up_' + str(i - startp))
project = getattr(self, 'proj_' + str(i - startp))
layers[i] = upsample(project(layers[i]))
node = getattr(self, 'node_' + str(i - startp))
layers[i] = node(layers[i] + layers[i - 1])
DLAUP_NODE_MAP = {
'conv': Conv,
'dcn': DeformConv,
}
class DLAUP(Backbone):
def __init__(self, bottom_up, in_features, norm, dlaup_node='conv'):
super(DLAUP, self).__init__()
assert isinstance(bottom_up, Backbone)
self.bottom_up = bottom_up
input_shapes = bottom_up.output_shape()
in_strides = [input_shapes[f].stride for f in in_features]
in_channels = [input_shapes[f].channels for f in in_features]
in_levels = [int(math.log2(input_shapes[f].stride)) for f in in_features]
self.in_features = in_features
out_features = ['dlaup{}'.format(l) for l in in_levels]
self._out_features = out_features
self._out_feature_channels = {
'dlaup{}'.format(l): in_channels[i] for i, l in enumerate(in_levels)}
self._out_feature_strides = {
'dlaup{}'.format(l): 2 ** l for l in in_levels}
print('self._out_features', self._out_features)
print('self._out_feature_channels', self._out_feature_channels)
print('self._out_feature_strides', self._out_feature_strides)
self._size_divisibility = 32
node_type = DLAUP_NODE_MAP[dlaup_node]
self.startp = int(math.log2(in_strides[0]))
self.channels = in_channels
channels = list(in_channels)
scales = np.array([2 ** i for i in range(len(out_features))], dtype=int)
for i in range(len(channels) - 1):
j = -i - 2
setattr(self, 'ida_{}'.format(i),
IDAUp(channels[j], in_channels[j:],
scales[j:] // scales[j],
norm=norm,
node_type=node_type))
scales[j + 1:] = scales[j]
in_channels[j + 1:] = [channels[j] for _ in channels[j + 1:]]
@property
def size_divisibility(self):
return self._size_divisibility
def forward(self, x):
bottom_up_features = self.bottom_up(x)
layers = [bottom_up_features[f] for f in self.in_features]
out = [layers[-1]] # start with 32
for i in range(len(layers) - 1):
ida = getattr(self, 'ida_{}'.format(i))
ida(layers, len(layers) - i - 2, len(layers))
out.insert(0, layers[-1])
ret = {}
for k, v in zip(self._out_features, out):
ret[k] = v
# import pdb; pdb.set_trace()
return ret
def dla34(cfg, pretrained=None): # DLA-34
model = DLA(cfg, [1, 1, 1, 2, 2, 1],
[16, 32, 64, 128, 256, 512],
block=BasicBlock)
return model
class LastLevelP6P7(nn.Module):
"""
This module is used in RetinaNet to generate extra layers, P6 and P7 from
C5 feature.
"""
def __init__(self, in_channels, out_channels):
super().__init__()
self.num_levels = 2
self.in_feature = "dla5"
self.p6 = nn.Conv2d(in_channels, out_channels, 3, 2, 1)
self.p7 = nn.Conv2d(out_channels, out_channels, 3, 2, 1)
for module in [self.p6, self.p7]:
weight_init.c2_xavier_fill(module)
def forward(self, c5):
p6 = self.p6(c5)
p7 = self.p7(F.relu(p6))
return [p6, p7]
@BACKBONE_REGISTRY.register()
def build_dla_fpn3_backbone(cfg, input_shape: ShapeSpec):
"""
Args:
cfg: a detectron2 CfgNode
Returns:
backbone (Backbone): backbone module, must be a subclass of :class:`Backbone`.
"""
depth_to_creator = {"dla34": dla34}
bottom_up = depth_to_creator['dla{}'.format(cfg.MODEL.DLA.NUM_LAYERS)](cfg)
in_features = cfg.MODEL.FPN.IN_FEATURES
out_channels = cfg.MODEL.FPN.OUT_CHANNELS
backbone = FPN(
bottom_up=bottom_up,
in_features=in_features,
out_channels=out_channels,
norm=cfg.MODEL.FPN.NORM,
top_block=None,
fuse_type=cfg.MODEL.FPN.FUSE_TYPE,
)
return backbone
@BACKBONE_REGISTRY.register()
def build_dla_fpn5_backbone(cfg, input_shape: ShapeSpec):
"""
Args:
cfg: a detectron2 CfgNode
Returns:
backbone (Backbone): backbone module, must be a subclass of :class:`Backbone`.
"""
depth_to_creator = {"dla34": dla34}
bottom_up = depth_to_creator['dla{}'.format(cfg.MODEL.DLA.NUM_LAYERS)](cfg)
in_features = cfg.MODEL.FPN.IN_FEATURES
out_channels = cfg.MODEL.FPN.OUT_CHANNELS
in_channels_top = bottom_up.output_shape()['dla5'].channels
backbone = FPN(
bottom_up=bottom_up,
in_features=in_features,
out_channels=out_channels,
norm=cfg.MODEL.FPN.NORM,
top_block=LastLevelP6P7(in_channels_top, out_channels),
fuse_type=cfg.MODEL.FPN.FUSE_TYPE,
)
return backbone
@BACKBONE_REGISTRY.register()
def build_dlaup_backbone(cfg, input_shape: ShapeSpec):
"""
Args:
cfg: a detectron2 CfgNode
Returns:
backbone (Backbone): backbone module, must be a subclass of :class:`Backbone`.
"""
depth_to_creator = {"dla34": dla34}
bottom_up = depth_to_creator['dla{}'.format(cfg.MODEL.DLA.NUM_LAYERS)](cfg)
backbone = DLAUP(
bottom_up=bottom_up,
in_features=cfg.MODEL.DLA.DLAUP_IN_FEATURES,
norm=cfg.MODEL.DLA.NORM,
dlaup_node=cfg.MODEL.DLA.DLAUP_NODE,
)
return backbone
|