File size: 37,754 Bytes
8075387
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

import math
import json
import copy
from typing import List, Dict
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F

from detectron2.modeling.proposal_generator.build import PROPOSAL_GENERATOR_REGISTRY
from detectron2.layers import ShapeSpec, cat
from detectron2.structures import Instances, Boxes
from detectron2.modeling import detector_postprocess
from detectron2.utils.comm import get_world_size
from detectron2.config import configurable

from ..layers.heatmap_focal_loss import heatmap_focal_loss_jit
from ..layers.heatmap_focal_loss import binary_heatmap_focal_loss_jit
from ..layers.iou_loss import IOULoss
from ..layers.ml_nms import ml_nms
from ..debug import debug_train, debug_test
from .utils import reduce_sum, _transpose
from .centernet_head import CenterNetHead

__all__ = ["CenterNet"]

INF = 100000000

@PROPOSAL_GENERATOR_REGISTRY.register()
class CenterNet(nn.Module):
    @configurable
    def __init__(self, 
        # input_shape: Dict[str, ShapeSpec],
        in_channels=256,
        *,
        num_classes=80,
        in_features=("p3", "p4", "p5", "p6", "p7"),
        strides=(8, 16, 32, 64, 128),
        score_thresh=0.05,
        hm_min_overlap=0.8,
        loc_loss_type='giou',
        min_radius=4,
        hm_focal_alpha=0.25,
        hm_focal_beta=4,
        loss_gamma=2.0,
        reg_weight=2.0,
        not_norm_reg=True,
        with_agn_hm=False,
        only_proposal=False,
        as_proposal=False,
        not_nms=False,
        pos_weight=1.,
        neg_weight=1.,
        sigmoid_clamp=1e-4,
        ignore_high_fp=-1.,
        center_nms=False,
        sizes_of_interest=[[0,80],[64,160],[128,320],[256,640],[512,10000000]],
        more_pos=False,
        more_pos_thresh=0.2,
        more_pos_topk=9,
        pre_nms_topk_train=1000,
        pre_nms_topk_test=1000,
        post_nms_topk_train=100,
        post_nms_topk_test=100,
        nms_thresh_train=0.6,
        nms_thresh_test=0.6,
        no_reduce=False,
        not_clamp_box=False,
        debug=False,
        vis_thresh=0.5,
        pixel_mean=[103.530,116.280,123.675],
        pixel_std=[1.0,1.0,1.0],
        device='cuda',
        centernet_head=None,
    ):
        super().__init__()
        self.num_classes = num_classes
        self.in_features = in_features
        self.strides = strides
        self.score_thresh = score_thresh
        self.min_radius = min_radius
        self.hm_focal_alpha = hm_focal_alpha
        self.hm_focal_beta = hm_focal_beta
        self.loss_gamma = loss_gamma
        self.reg_weight = reg_weight
        self.not_norm_reg = not_norm_reg
        self.with_agn_hm = with_agn_hm
        self.only_proposal = only_proposal
        self.as_proposal = as_proposal
        self.not_nms = not_nms
        self.pos_weight = pos_weight
        self.neg_weight = neg_weight
        self.sigmoid_clamp = sigmoid_clamp
        self.ignore_high_fp = ignore_high_fp
        self.center_nms = center_nms
        self.sizes_of_interest = sizes_of_interest
        self.more_pos = more_pos
        self.more_pos_thresh = more_pos_thresh
        self.more_pos_topk = more_pos_topk
        self.pre_nms_topk_train = pre_nms_topk_train
        self.pre_nms_topk_test = pre_nms_topk_test
        self.post_nms_topk_train = post_nms_topk_train
        self.post_nms_topk_test = post_nms_topk_test
        self.nms_thresh_train = nms_thresh_train
        self.nms_thresh_test = nms_thresh_test
        self.no_reduce = no_reduce
        self.not_clamp_box = not_clamp_box
        
        self.debug = debug
        self.vis_thresh = vis_thresh
        if self.center_nms:
            self.not_nms = True
        self.iou_loss = IOULoss(loc_loss_type)
        assert (not self.only_proposal) or self.with_agn_hm
        # delta for rendering heatmap
        self.delta = (1 - hm_min_overlap) / (1 + hm_min_overlap)
        if centernet_head is None:
            self.centernet_head = CenterNetHead(
                in_channels=in_channels,
                num_levels=len(in_features),
                with_agn_hm=with_agn_hm,
                only_proposal=only_proposal)
        else:
            self.centernet_head = centernet_head
        if self.debug:
            pixel_mean = torch.Tensor(pixel_mean).to(
                torch.device(device)).view(3, 1, 1)
            pixel_std = torch.Tensor(pixel_std).to(
                torch.device(device)).view(3, 1, 1)
            self.denormalizer = lambda x: x * pixel_std + pixel_mean

    @classmethod
    def from_config(cls, cfg, input_shape):
        ret = {
            # 'input_shape': input_shape,
            'in_channels': input_shape[
                cfg.MODEL.CENTERNET.IN_FEATURES[0]].channels,
            'num_classes': cfg.MODEL.CENTERNET.NUM_CLASSES,
            'in_features': cfg.MODEL.CENTERNET.IN_FEATURES,
            'strides': cfg.MODEL.CENTERNET.FPN_STRIDES,
            'score_thresh': cfg.MODEL.CENTERNET.INFERENCE_TH,
            'loc_loss_type': cfg.MODEL.CENTERNET.LOC_LOSS_TYPE,
            'hm_min_overlap': cfg.MODEL.CENTERNET.HM_MIN_OVERLAP,
            'min_radius': cfg.MODEL.CENTERNET.MIN_RADIUS,
            'hm_focal_alpha': cfg.MODEL.CENTERNET.HM_FOCAL_ALPHA,
            'hm_focal_beta': cfg.MODEL.CENTERNET.HM_FOCAL_BETA,
            'loss_gamma': cfg.MODEL.CENTERNET.LOSS_GAMMA,
            'reg_weight': cfg.MODEL.CENTERNET.REG_WEIGHT,
            'not_norm_reg': cfg.MODEL.CENTERNET.NOT_NORM_REG,
            'with_agn_hm': cfg.MODEL.CENTERNET.WITH_AGN_HM,
            'only_proposal': cfg.MODEL.CENTERNET.ONLY_PROPOSAL,
            'as_proposal': cfg.MODEL.CENTERNET.AS_PROPOSAL,
            'not_nms': cfg.MODEL.CENTERNET.NOT_NMS,
            'pos_weight': cfg.MODEL.CENTERNET.POS_WEIGHT,
            'neg_weight': cfg.MODEL.CENTERNET.NEG_WEIGHT,
            'sigmoid_clamp': cfg.MODEL.CENTERNET.SIGMOID_CLAMP,
            'ignore_high_fp': cfg.MODEL.CENTERNET.IGNORE_HIGH_FP,
            'center_nms': cfg.MODEL.CENTERNET.CENTER_NMS,
            'sizes_of_interest': cfg.MODEL.CENTERNET.SOI,
            'more_pos': cfg.MODEL.CENTERNET.MORE_POS,
            'more_pos_thresh': cfg.MODEL.CENTERNET.MORE_POS_THRESH,
            'more_pos_topk': cfg.MODEL.CENTERNET.MORE_POS_TOPK,
            'pre_nms_topk_train': cfg.MODEL.CENTERNET.PRE_NMS_TOPK_TRAIN,
            'pre_nms_topk_test': cfg.MODEL.CENTERNET.PRE_NMS_TOPK_TEST,
            'post_nms_topk_train': cfg.MODEL.CENTERNET.POST_NMS_TOPK_TRAIN,
            'post_nms_topk_test': cfg.MODEL.CENTERNET.POST_NMS_TOPK_TEST,
            'nms_thresh_train': cfg.MODEL.CENTERNET.NMS_TH_TRAIN,
            'nms_thresh_test': cfg.MODEL.CENTERNET.NMS_TH_TEST,
            'no_reduce': cfg.MODEL.CENTERNET.NO_REDUCE,
            'not_clamp_box': cfg.INPUT.NOT_CLAMP_BOX,
            'debug': cfg.DEBUG,
            'vis_thresh': cfg.VIS_THRESH,
            'pixel_mean': cfg.MODEL.PIXEL_MEAN,
            'pixel_std': cfg.MODEL.PIXEL_STD,
            'device': cfg.MODEL.DEVICE,
            'centernet_head': CenterNetHead(
                cfg, [input_shape[f] for f in cfg.MODEL.CENTERNET.IN_FEATURES]),
        }
        return ret


    def forward(self, images, features_dict, gt_instances):
        features = [features_dict[f] for f in self.in_features]
        clss_per_level, reg_pred_per_level, agn_hm_pred_per_level = \
            self.centernet_head(features)
        grids = self.compute_grids(features)
        shapes_per_level = grids[0].new_tensor(
                    [(x.shape[2], x.shape[3]) for x in reg_pred_per_level])
        
        if not self.training:
            return self.inference(
                images, clss_per_level, reg_pred_per_level, 
                agn_hm_pred_per_level, grids)
        else:
            pos_inds, labels, reg_targets, flattened_hms = \
                self._get_ground_truth(
                    grids, shapes_per_level, gt_instances)
            # logits_pred: M x F, reg_pred: M x 4, agn_hm_pred: M
            logits_pred, reg_pred, agn_hm_pred = self._flatten_outputs(
                clss_per_level, reg_pred_per_level, agn_hm_pred_per_level)

            if self.more_pos:
                # add more pixels as positive if \
                #   1. they are within the center3x3 region of an object
                #   2. their regression losses are small (<self.more_pos_thresh)
                pos_inds, labels = self._add_more_pos(
                    reg_pred, gt_instances, shapes_per_level)
            
            losses = self.losses(
                pos_inds, labels, reg_targets, flattened_hms,
                logits_pred, reg_pred, agn_hm_pred)
            
            proposals = None
            if self.only_proposal:
                agn_hm_pred_per_level = [x.sigmoid() for x in agn_hm_pred_per_level]
                proposals = self.predict_instances(
                    grids, agn_hm_pred_per_level, reg_pred_per_level, 
                    images.image_sizes, [None for _ in agn_hm_pred_per_level])
            elif self.as_proposal: # category specific bbox as agnostic proposals
                clss_per_level = [x.sigmoid() for x in clss_per_level]
                proposals = self.predict_instances(
                    grids, clss_per_level, reg_pred_per_level, 
                    images.image_sizes, agn_hm_pred_per_level)
            if self.only_proposal or self.as_proposal:
                for p in range(len(proposals)):
                    proposals[p].proposal_boxes = proposals[p].get('pred_boxes')
                    proposals[p].objectness_logits = proposals[p].get('scores')
                    proposals[p].remove('pred_boxes')
                    proposals[p].remove('scores')
                    proposals[p].remove('pred_classes')

            if self.debug:
                debug_train(
                    [self.denormalizer(x) for x in images], 
                    gt_instances, flattened_hms, reg_targets, 
                    labels, pos_inds, shapes_per_level, grids, self.strides)
            return proposals, losses


    def losses(
        self, pos_inds, labels, reg_targets, flattened_hms,
        logits_pred, reg_pred, agn_hm_pred):
        '''
        Inputs:
            pos_inds: N
            labels: N
            reg_targets: M x 4
            flattened_hms: M x C
            logits_pred: M x C
            reg_pred: M x 4
            agn_hm_pred: M x 1 or None
            N: number of positive locations in all images
            M: number of pixels from all FPN levels
            C: number of classes
        '''
        assert (torch.isfinite(reg_pred).all().item())
        num_pos_local = pos_inds.numel()
        num_gpus = get_world_size()
        if self.no_reduce:
            total_num_pos = num_pos_local * num_gpus
        else:
            total_num_pos = reduce_sum(
                pos_inds.new_tensor([num_pos_local])).item()
        num_pos_avg = max(total_num_pos / num_gpus, 1.0)

        losses = {}
        if not self.only_proposal:
            pos_loss, neg_loss = heatmap_focal_loss_jit(
                logits_pred.float(), flattened_hms.float(), pos_inds, labels,
                alpha=self.hm_focal_alpha, 
                beta=self.hm_focal_beta, 
                gamma=self.loss_gamma, 
                reduction='sum',
                sigmoid_clamp=self.sigmoid_clamp,
                ignore_high_fp=self.ignore_high_fp,
            )
            pos_loss = self.pos_weight * pos_loss / num_pos_avg
            neg_loss = self.neg_weight * neg_loss / num_pos_avg
            losses['loss_centernet_pos'] = pos_loss
            losses['loss_centernet_neg'] = neg_loss
        
        reg_inds = torch.nonzero(reg_targets.max(dim=1)[0] >= 0).squeeze(1)
        reg_pred = reg_pred[reg_inds]
        reg_targets_pos = reg_targets[reg_inds]
        reg_weight_map = flattened_hms.max(dim=1)[0]
        reg_weight_map = reg_weight_map[reg_inds]
        reg_weight_map = reg_weight_map * 0 + 1 \
            if self.not_norm_reg else reg_weight_map
        if self.no_reduce:
            reg_norm = max(reg_weight_map.sum(), 1)
        else:
            reg_norm = max(reduce_sum(reg_weight_map.sum()).item() / num_gpus, 1)
        
        reg_loss = self.reg_weight * self.iou_loss(
            reg_pred, reg_targets_pos, reg_weight_map,
            reduction='sum') / reg_norm
        losses['loss_centernet_loc'] = reg_loss

        if self.with_agn_hm:
            cat_agn_heatmap = flattened_hms.max(dim=1)[0] # M
            agn_pos_loss, agn_neg_loss = binary_heatmap_focal_loss_jit(
                agn_hm_pred.float(), cat_agn_heatmap.float(), pos_inds,
                alpha=self.hm_focal_alpha, 
                beta=self.hm_focal_beta, 
                gamma=self.loss_gamma,
                sigmoid_clamp=self.sigmoid_clamp,
                ignore_high_fp=self.ignore_high_fp,
            )
            agn_pos_loss = self.pos_weight * agn_pos_loss / num_pos_avg
            agn_neg_loss = self.neg_weight * agn_neg_loss / num_pos_avg
            losses['loss_centernet_agn_pos'] = agn_pos_loss
            losses['loss_centernet_agn_neg'] = agn_neg_loss
    
        if self.debug:
            print('losses', losses)
            print('total_num_pos', total_num_pos)
        return losses


    def compute_grids(self, features):
        grids = []
        for level, feature in enumerate(features):
            h, w = feature.size()[-2:]
            shifts_x = torch.arange(
                0, w * self.strides[level], 
                step=self.strides[level],
                dtype=torch.float32, device=feature.device)
            shifts_y = torch.arange(
                0, h * self.strides[level], 
                step=self.strides[level],
                dtype=torch.float32, device=feature.device)
            shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x)
            shift_x = shift_x.reshape(-1)
            shift_y = shift_y.reshape(-1)
            grids_per_level = torch.stack((shift_x, shift_y), dim=1) + \
                self.strides[level] // 2
            grids.append(grids_per_level)
        return grids


    def _get_ground_truth(self, grids, shapes_per_level, gt_instances):
        '''
        Input:
            grids: list of tensors [(hl x wl, 2)]_l
            shapes_per_level: list of tuples L x 2:
            gt_instances: gt instances
        Retuen:
            pos_inds: N
            labels: N
            reg_targets: M x 4
            flattened_hms: M x C or M x 1
            N: number of objects in all images
            M: number of pixels from all FPN levels
        '''

        # get positive pixel index
        if not self.more_pos:
            pos_inds, labels = self._get_label_inds(
                gt_instances, shapes_per_level) 
        else:
            pos_inds, labels = None, None
        heatmap_channels = self.num_classes
        L = len(grids)
        num_loc_list = [len(loc) for loc in grids]
        strides = torch.cat([
            shapes_per_level.new_ones(num_loc_list[l]) * self.strides[l] \
            for l in range(L)]).float() # M
        reg_size_ranges = torch.cat([
            shapes_per_level.new_tensor(self.sizes_of_interest[l]).float().view(
            1, 2).expand(num_loc_list[l], 2) for l in range(L)]) # M x 2
        grids = torch.cat(grids, dim=0) # M x 2
        M = grids.shape[0]

        reg_targets = []
        flattened_hms = []
        for i in range(len(gt_instances)): # images
            boxes = gt_instances[i].gt_boxes.tensor # N x 4
            area = gt_instances[i].gt_boxes.area() # N
            gt_classes = gt_instances[i].gt_classes # N in [0, self.num_classes]

            N = boxes.shape[0]
            if N == 0:
                reg_targets.append(grids.new_zeros((M, 4)) - INF)
                flattened_hms.append(
                    grids.new_zeros((
                        M, 1 if self.only_proposal else heatmap_channels)))
                continue
            
            l = grids[:, 0].view(M, 1) - boxes[:, 0].view(1, N) # M x N
            t = grids[:, 1].view(M, 1) - boxes[:, 1].view(1, N) # M x N
            r = boxes[:, 2].view(1, N) - grids[:, 0].view(M, 1) # M x N
            b = boxes[:, 3].view(1, N) - grids[:, 1].view(M, 1) # M x N
            reg_target = torch.stack([l, t, r, b], dim=2) # M x N x 4

            centers = ((boxes[:, [0, 1]] + boxes[:, [2, 3]]) / 2) # N x 2
            centers_expanded = centers.view(1, N, 2).expand(M, N, 2) # M x N x 2
            strides_expanded = strides.view(M, 1, 1).expand(M, N, 2)
            centers_discret = ((centers_expanded / strides_expanded).int() * \
                strides_expanded).float() + strides_expanded / 2 # M x N x 2
            
            is_peak = (((grids.view(M, 1, 2).expand(M, N, 2) - \
                centers_discret) ** 2).sum(dim=2) == 0) # M x N
            is_in_boxes = reg_target.min(dim=2)[0] > 0 # M x N
            is_center3x3 = self.get_center3x3(
                grids, centers, strides) & is_in_boxes # M x N
            is_cared_in_the_level = self.assign_reg_fpn(
                reg_target, reg_size_ranges) # M x N
            reg_mask = is_center3x3 & is_cared_in_the_level # M x N

            dist2 = ((grids.view(M, 1, 2).expand(M, N, 2) - \
                centers_expanded) ** 2).sum(dim=2) # M x N
            dist2[is_peak] = 0
            radius2 = self.delta ** 2 * 2 * area # N
            radius2 = torch.clamp(
                radius2, min=self.min_radius ** 2)
            weighted_dist2 = dist2 / radius2.view(1, N).expand(M, N) # M x N            
            reg_target = self._get_reg_targets(
                reg_target, weighted_dist2.clone(), reg_mask, area) # M x 4

            if self.only_proposal:
                flattened_hm = self._create_agn_heatmaps_from_dist(
                    weighted_dist2.clone()) # M x 1
            else:
                flattened_hm = self._create_heatmaps_from_dist(
                    weighted_dist2.clone(), gt_classes, 
                    channels=heatmap_channels) # M x C

            reg_targets.append(reg_target)
            flattened_hms.append(flattened_hm)
        
        # transpose im first training_targets to level first ones
        reg_targets = _transpose(reg_targets, num_loc_list)
        flattened_hms = _transpose(flattened_hms, num_loc_list)
        for l in range(len(reg_targets)):
            reg_targets[l] = reg_targets[l] / float(self.strides[l])
        reg_targets = cat([x for x in reg_targets], dim=0) # MB x 4
        flattened_hms = cat([x for x in flattened_hms], dim=0) # MB x C
        
        return pos_inds, labels, reg_targets, flattened_hms


    def _get_label_inds(self, gt_instances, shapes_per_level):
        '''
        Inputs:
            gt_instances: [n_i], sum n_i = N
            shapes_per_level: L x 2 [(h_l, w_l)]_L
        Returns:
            pos_inds: N'
            labels: N'
        '''
        pos_inds = []
        labels = []
        L = len(self.strides)
        B = len(gt_instances)
        shapes_per_level = shapes_per_level.long()
        loc_per_level = (shapes_per_level[:, 0] * shapes_per_level[:, 1]).long() # L
        level_bases = []
        s = 0
        for l in range(L):
            level_bases.append(s)
            s = s + B * loc_per_level[l]
        level_bases = shapes_per_level.new_tensor(level_bases).long() # L
        strides_default = shapes_per_level.new_tensor(self.strides).float() # L
        for im_i in range(B):
            targets_per_im = gt_instances[im_i]
            bboxes = targets_per_im.gt_boxes.tensor # n x 4
            n = bboxes.shape[0]
            centers = ((bboxes[:, [0, 1]] + bboxes[:, [2, 3]]) / 2) # n x 2
            centers = centers.view(n, 1, 2).expand(n, L, 2).contiguous()
            if self.not_clamp_box:
                h, w = gt_instances[im_i]._image_size
                centers[:, :, 0].clamp_(min=0).clamp_(max=w-1)
                centers[:, :, 1].clamp_(min=0).clamp_(max=h-1)
            strides = strides_default.view(1, L, 1).expand(n, L, 2)
            centers_inds = (centers / strides).long() # n x L x 2
            Ws = shapes_per_level[:, 1].view(1, L).expand(n, L)
            pos_ind = level_bases.view(1, L).expand(n, L) + \
                       im_i * loc_per_level.view(1, L).expand(n, L) + \
                       centers_inds[:, :, 1] * Ws + \
                       centers_inds[:, :, 0] # n x L
            is_cared_in_the_level = self.assign_fpn_level(bboxes)
            pos_ind = pos_ind[is_cared_in_the_level].view(-1)
            label = targets_per_im.gt_classes.view(
                n, 1).expand(n, L)[is_cared_in_the_level].view(-1)

            pos_inds.append(pos_ind) # n'
            labels.append(label) # n'
        pos_inds = torch.cat(pos_inds, dim=0).long()
        labels = torch.cat(labels, dim=0)
        return pos_inds, labels # N, N


    def assign_fpn_level(self, boxes):
        '''
        Inputs:
            boxes: n x 4
            size_ranges: L x 2
        Return:
            is_cared_in_the_level: n x L
        '''
        size_ranges = boxes.new_tensor(
            self.sizes_of_interest).view(len(self.sizes_of_interest), 2) # L x 2
        crit = ((boxes[:, 2:] - boxes[:, :2]) **2).sum(dim=1) ** 0.5 / 2 # n
        n, L = crit.shape[0], size_ranges.shape[0]
        crit = crit.view(n, 1).expand(n, L)
        size_ranges_expand = size_ranges.view(1, L, 2).expand(n, L, 2)
        is_cared_in_the_level = (crit >= size_ranges_expand[:, :, 0]) & \
            (crit <= size_ranges_expand[:, :, 1])
        return is_cared_in_the_level
    

    def assign_reg_fpn(self, reg_targets_per_im, size_ranges):
        '''
        TODO (Xingyi): merge it with assign_fpn_level
        Inputs:
            reg_targets_per_im: M x N x 4
            size_ranges: M x 2
        '''
        crit = ((reg_targets_per_im[:, :, :2] + \
            reg_targets_per_im[:, :, 2:])**2).sum(dim=2) ** 0.5 / 2 # M x N
        is_cared_in_the_level = (crit >= size_ranges[:, [0]]) & \
            (crit <= size_ranges[:, [1]])
        return is_cared_in_the_level


    def _get_reg_targets(self, reg_targets, dist, mask, area):
        '''
          reg_targets (M x N x 4): long tensor
          dist (M x N)
          is_*: M x N
        '''
        dist[mask == 0] = INF * 1.0
        min_dist, min_inds = dist.min(dim=1) # M
        reg_targets_per_im = reg_targets[
            range(len(reg_targets)), min_inds] # M x N x 4 --> M x 4
        reg_targets_per_im[min_dist == INF] = - INF
        return reg_targets_per_im


    def _create_heatmaps_from_dist(self, dist, labels, channels):
        '''
        dist: M x N
        labels: N
        return:
          heatmaps: M x C
        '''
        heatmaps = dist.new_zeros((dist.shape[0], channels))
        for c in range(channels):
            inds = (labels == c) # N
            if inds.int().sum() == 0:
                continue
            heatmaps[:, c] = torch.exp(-dist[:, inds].min(dim=1)[0])
            zeros = heatmaps[:, c] < 1e-4
            heatmaps[zeros, c] = 0
        return heatmaps


    def _create_agn_heatmaps_from_dist(self, dist):
        '''
        TODO (Xingyi): merge it with _create_heatmaps_from_dist
        dist: M x N
        return:
          heatmaps: M x 1
        '''
        heatmaps = dist.new_zeros((dist.shape[0], 1))
        heatmaps[:, 0] = torch.exp(-dist.min(dim=1)[0])
        zeros = heatmaps < 1e-4
        heatmaps[zeros] = 0
        return heatmaps


    def _flatten_outputs(self, clss, reg_pred, agn_hm_pred):
        # Reshape: (N, F, Hl, Wl) -> (N, Hl, Wl, F) -> (sum_l N*Hl*Wl, F)
        clss = cat([x.permute(0, 2, 3, 1).reshape(-1, x.shape[1]) \
            for x in clss], dim=0) if clss[0] is not None else None
        reg_pred = cat(
            [x.permute(0, 2, 3, 1).reshape(-1, 4) for x in reg_pred], dim=0)            
        agn_hm_pred = cat([x.permute(0, 2, 3, 1).reshape(-1) \
            for x in agn_hm_pred], dim=0) if self.with_agn_hm else None
        return clss, reg_pred, agn_hm_pred


    def get_center3x3(self, locations, centers, strides):
        '''
        Inputs:
            locations: M x 2
            centers: N x 2
            strides: M
        '''
        M, N = locations.shape[0], centers.shape[0]
        locations_expanded = locations.view(M, 1, 2).expand(M, N, 2) # M x N x 2
        centers_expanded = centers.view(1, N, 2).expand(M, N, 2) # M x N x 2
        strides_expanded = strides.view(M, 1, 1).expand(M, N, 2) # M x N
        centers_discret = ((centers_expanded / strides_expanded).int() * \
            strides_expanded).float() + strides_expanded / 2 # M x N x 2
        dist_x = (locations_expanded[:, :, 0] - centers_discret[:, :, 0]).abs()
        dist_y = (locations_expanded[:, :, 1] - centers_discret[:, :, 1]).abs()
        return (dist_x <= strides_expanded[:, :, 0]) & \
            (dist_y <= strides_expanded[:, :, 0])


    @torch.no_grad()
    def inference(self, images, clss_per_level, reg_pred_per_level, 
        agn_hm_pred_per_level, grids):
        logits_pred = [x.sigmoid() if x is not None else None \
            for x in clss_per_level]
        agn_hm_pred_per_level = [x.sigmoid() if x is not None else None \
            for x in agn_hm_pred_per_level]

        if self.only_proposal:
            proposals = self.predict_instances(
                grids, agn_hm_pred_per_level, reg_pred_per_level, 
                images.image_sizes, [None for _ in agn_hm_pred_per_level])
        else:
            proposals = self.predict_instances(
                grids, logits_pred, reg_pred_per_level, 
                images.image_sizes, agn_hm_pred_per_level)
        if self.as_proposal or self.only_proposal:
            for p in range(len(proposals)):
                proposals[p].proposal_boxes = proposals[p].get('pred_boxes')
                proposals[p].objectness_logits = proposals[p].get('scores')
                proposals[p].remove('pred_boxes')

        if self.debug:
            debug_test(
                [self.denormalizer(x) for x in images], 
                logits_pred, reg_pred_per_level, 
                agn_hm_pred_per_level, preds=proposals,
                vis_thresh=self.vis_thresh, 
                debug_show_name=False)
        return proposals, {}


    @torch.no_grad()
    def predict_instances(
        self, grids, logits_pred, reg_pred, image_sizes, agn_hm_pred, 
        is_proposal=False):
        sampled_boxes = []
        for l in range(len(grids)):
            sampled_boxes.append(self.predict_single_level(
                grids[l], logits_pred[l], reg_pred[l] * self.strides[l],
                image_sizes, agn_hm_pred[l], l, is_proposal=is_proposal))
        boxlists = list(zip(*sampled_boxes))
        boxlists = [Instances.cat(boxlist) for boxlist in boxlists]
        boxlists = self.nms_and_topK(
            boxlists, nms=not self.not_nms)
        return boxlists

    
    @torch.no_grad()
    def predict_single_level(
        self, grids, heatmap, reg_pred, image_sizes, agn_hm, level, 
        is_proposal=False):
        N, C, H, W = heatmap.shape
        # put in the same format as grids
        if self.center_nms:
            heatmap_nms = nn.functional.max_pool2d(
                heatmap, (3, 3), stride=1, padding=1)
            heatmap = heatmap * (heatmap_nms == heatmap).float()
        heatmap = heatmap.permute(0, 2, 3, 1) # N x H x W x C
        heatmap = heatmap.reshape(N, -1, C) # N x HW x C
        box_regression = reg_pred.view(N, 4, H, W).permute(0, 2, 3, 1) # N x H x W x 4 
        box_regression = box_regression.reshape(N, -1, 4)

        candidate_inds = heatmap > self.score_thresh # 0.05
        pre_nms_top_n = candidate_inds.view(N, -1).sum(1) # N
        pre_nms_topk = self.pre_nms_topk_train if self.training else self.pre_nms_topk_test
        pre_nms_top_n = pre_nms_top_n.clamp(max=pre_nms_topk) # N

        if agn_hm is not None:
            agn_hm = agn_hm.view(N, 1, H, W).permute(0, 2, 3, 1)
            agn_hm = agn_hm.reshape(N, -1)
            heatmap = heatmap * agn_hm[:, :, None]

        results = []
        for i in range(N):
            per_box_cls = heatmap[i] # HW x C
            per_candidate_inds = candidate_inds[i] # n
            per_box_cls = per_box_cls[per_candidate_inds] # n

            per_candidate_nonzeros = per_candidate_inds.nonzero() # n
            per_box_loc = per_candidate_nonzeros[:, 0] # n
            per_class = per_candidate_nonzeros[:, 1] # n

            per_box_regression = box_regression[i] # HW x 4
            per_box_regression = per_box_regression[per_box_loc] # n x 4
            per_grids = grids[per_box_loc] # n x 2

            per_pre_nms_top_n = pre_nms_top_n[i] # 1

            if per_candidate_inds.sum().item() > per_pre_nms_top_n.item():
                per_box_cls, top_k_indices = \
                    per_box_cls.topk(per_pre_nms_top_n, sorted=False)
                per_class = per_class[top_k_indices]
                per_box_regression = per_box_regression[top_k_indices]
                per_grids = per_grids[top_k_indices]
            
            detections = torch.stack([
                per_grids[:, 0] - per_box_regression[:, 0],
                per_grids[:, 1] - per_box_regression[:, 1],
                per_grids[:, 0] + per_box_regression[:, 2],
                per_grids[:, 1] + per_box_regression[:, 3],
            ], dim=1) # n x 4

            # avoid invalid boxes in RoI heads
            detections[:, 2] = torch.max(detections[:, 2], detections[:, 0] + 0.01)
            detections[:, 3] = torch.max(detections[:, 3], detections[:, 1] + 0.01)
            boxlist = Instances(image_sizes[i])
            boxlist.scores = torch.sqrt(per_box_cls) \
                if self.with_agn_hm else per_box_cls # n
            # import pdb; pdb.set_trace()
            boxlist.pred_boxes = Boxes(detections)
            boxlist.pred_classes = per_class
            results.append(boxlist)
        return results

    
    @torch.no_grad()
    def nms_and_topK(self, boxlists, nms=True):
        num_images = len(boxlists)
        results = []
        for i in range(num_images):
            nms_thresh = self.nms_thresh_train if self.training else \
                self.nms_thresh_test
            result = ml_nms(boxlists[i], nms_thresh) if nms else boxlists[i]
            if self.debug:
                print('#proposals before nms', len(boxlists[i]))
                print('#proposals after nms', len(result))
            num_dets = len(result)
            post_nms_topk = self.post_nms_topk_train if self.training else \
                self.post_nms_topk_test
            if num_dets > post_nms_topk:
                cls_scores = result.scores
                image_thresh, _ = torch.kthvalue(
                    cls_scores.float().cpu(),
                    num_dets - post_nms_topk + 1
                )
                keep = cls_scores >= image_thresh.item()
                keep = torch.nonzero(keep).squeeze(1)
                result = result[keep]
            if self.debug:
                print('#proposals after filter', len(result))
            results.append(result)
        return results

    
    @torch.no_grad()
    def _add_more_pos(self, reg_pred, gt_instances, shapes_per_level):
        labels, level_masks, c33_inds, c33_masks, c33_regs = \
            self._get_c33_inds(gt_instances, shapes_per_level)
        N, L, K = labels.shape[0], len(self.strides), 9
        c33_inds[c33_masks == 0] = 0
        reg_pred_c33 = reg_pred[c33_inds].detach() # N x L x K
        invalid_reg = c33_masks == 0
        c33_regs_expand = c33_regs.view(N * L * K, 4).clamp(min=0)
        if N > 0:
            with torch.no_grad():
                c33_reg_loss = self.iou_loss(
                    reg_pred_c33.view(N * L * K, 4), 
                    c33_regs_expand, None,
                    reduction='none').view(N, L, K).detach() # N x L x K
        else:
            c33_reg_loss = reg_pred_c33.new_zeros((N, L, K)).detach()
        c33_reg_loss[invalid_reg] = INF # N x L x K
        c33_reg_loss.view(N * L, K)[level_masks.view(N * L), 4] = 0 # real center
        c33_reg_loss = c33_reg_loss.view(N, L * K)
        if N == 0:
            loss_thresh = c33_reg_loss.new_ones((N)).float()
        else:
            loss_thresh = torch.kthvalue(
                c33_reg_loss, self.more_pos_topk, dim=1)[0] # N
        loss_thresh[loss_thresh > self.more_pos_thresh] = self.more_pos_thresh # N
        new_pos = c33_reg_loss.view(N, L, K) < \
            loss_thresh.view(N, 1, 1).expand(N, L, K)
        pos_inds = c33_inds[new_pos].view(-1) # P
        labels = labels.view(N, 1, 1).expand(N, L, K)[new_pos].view(-1)
        return pos_inds, labels
        
    
    @torch.no_grad()
    def _get_c33_inds(self, gt_instances, shapes_per_level):
        '''
        TODO (Xingyi): The current implementation is ugly. Refactor.
        Get the center (and the 3x3 region near center) locations of each objects
        Inputs:
            gt_instances: [n_i], sum n_i = N
            shapes_per_level: L x 2 [(h_l, w_l)]_L
        '''
        labels = []
        level_masks = []
        c33_inds = []
        c33_masks = []
        c33_regs = []
        L = len(self.strides)
        B = len(gt_instances)
        shapes_per_level = shapes_per_level.long()
        loc_per_level = (shapes_per_level[:, 0] * shapes_per_level[:, 1]).long() # L
        level_bases = []
        s = 0
        for l in range(L):
            level_bases.append(s)
            s = s + B * loc_per_level[l]
        level_bases = shapes_per_level.new_tensor(level_bases).long() # L
        strides_default = shapes_per_level.new_tensor(self.strides).float() # L
        K = 9
        dx = shapes_per_level.new_tensor([-1, 0, 1, -1, 0, 1, -1, 0, 1]).long()
        dy = shapes_per_level.new_tensor([-1, -1, -1, 0, 0, 0, 1, 1, 1]).long()
        for im_i in range(B):
            targets_per_im = gt_instances[im_i]
            bboxes = targets_per_im.gt_boxes.tensor # n x 4
            n = bboxes.shape[0]
            if n == 0:
                continue
            centers = ((bboxes[:, [0, 1]] + bboxes[:, [2, 3]]) / 2) # n x 2
            centers = centers.view(n, 1, 2).expand(n, L, 2)

            strides = strides_default.view(1, L, 1).expand(n, L, 2) # 
            centers_inds = (centers / strides).long() # n x L x 2
            center_grids = centers_inds * strides + strides // 2# n x L x 2
            l = center_grids[:, :, 0] - bboxes[:, 0].view(n, 1).expand(n, L)
            t = center_grids[:, :, 1] - bboxes[:, 1].view(n, 1).expand(n, L)
            r = bboxes[:, 2].view(n, 1).expand(n, L) - center_grids[:, :, 0]
            b = bboxes[:, 3].view(n, 1).expand(n, L) - center_grids[:, :, 1] # n x L
            reg = torch.stack([l, t, r, b], dim=2) # n x L x 4
            reg = reg / strides_default.view(1, L, 1).expand(n, L, 4).float()
            
            Ws = shapes_per_level[:, 1].view(1, L).expand(n, L)
            Hs = shapes_per_level[:, 0].view(1, L).expand(n, L)
            expand_Ws = Ws.view(n, L, 1).expand(n, L, K)
            expand_Hs = Hs.view(n, L, 1).expand(n, L, K)
            label = targets_per_im.gt_classes.view(n).clone()
            mask = reg.min(dim=2)[0] >= 0 # n x L
            mask = mask & self.assign_fpn_level(bboxes)
            labels.append(label) # n
            level_masks.append(mask) # n x L

            Dy = dy.view(1, 1, K).expand(n, L, K)
            Dx = dx.view(1, 1, K).expand(n, L, K)
            c33_ind = level_bases.view(1, L, 1).expand(n, L, K) + \
                       im_i * loc_per_level.view(1, L, 1).expand(n, L, K) + \
                       (centers_inds[:, :, 1:2].expand(n, L, K) + Dy) * expand_Ws + \
                       (centers_inds[:, :, 0:1].expand(n, L, K) + Dx) # n x L x K
            
            c33_mask = \
                ((centers_inds[:, :, 1:2].expand(n, L, K) + dy) < expand_Hs) & \
                ((centers_inds[:, :, 1:2].expand(n, L, K) + dy) >= 0) & \
                ((centers_inds[:, :, 0:1].expand(n, L, K) + dx) < expand_Ws) & \
                ((centers_inds[:, :, 0:1].expand(n, L, K) + dx) >= 0)
            # TODO (Xingyi): think about better way to implement this
            # Currently it hard codes the 3x3 region
            c33_reg = reg.view(n, L, 1, 4).expand(n, L, K, 4).clone()
            c33_reg[:, :, [0, 3, 6], 0] -= 1
            c33_reg[:, :, [0, 3, 6], 2] += 1
            c33_reg[:, :, [2, 5, 8], 0] += 1
            c33_reg[:, :, [2, 5, 8], 2] -= 1
            c33_reg[:, :, [0, 1, 2], 1] -= 1
            c33_reg[:, :, [0, 1, 2], 3] += 1
            c33_reg[:, :, [6, 7, 8], 1] += 1
            c33_reg[:, :, [6, 7, 8], 3] -= 1
            c33_mask = c33_mask & (c33_reg.min(dim=3)[0] >= 0) # n x L x K
            c33_inds.append(c33_ind)
            c33_masks.append(c33_mask)
            c33_regs.append(c33_reg)
        
        if len(level_masks) > 0:
            labels = torch.cat(labels, dim=0)
            level_masks = torch.cat(level_masks, dim=0)
            c33_inds = torch.cat(c33_inds, dim=0).long()
            c33_regs = torch.cat(c33_regs, dim=0)
            c33_masks = torch.cat(c33_masks, dim=0)
        else:
            labels = shapes_per_level.new_zeros((0)).long()
            level_masks = shapes_per_level.new_zeros((0, L)).bool()
            c33_inds = shapes_per_level.new_zeros((0, L, K)).long()
            c33_regs = shapes_per_level.new_zeros((0, L, K, 4)).float()
            c33_masks = shapes_per_level.new_zeros((0, L, K)).bool()
        return labels, level_masks, c33_inds, c33_masks, c33_regs # N x L, N x L x K