Spaces:
Runtime error
Runtime error
File size: 37,754 Bytes
8075387 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 |
import math
import json
import copy
from typing import List, Dict
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
from detectron2.modeling.proposal_generator.build import PROPOSAL_GENERATOR_REGISTRY
from detectron2.layers import ShapeSpec, cat
from detectron2.structures import Instances, Boxes
from detectron2.modeling import detector_postprocess
from detectron2.utils.comm import get_world_size
from detectron2.config import configurable
from ..layers.heatmap_focal_loss import heatmap_focal_loss_jit
from ..layers.heatmap_focal_loss import binary_heatmap_focal_loss_jit
from ..layers.iou_loss import IOULoss
from ..layers.ml_nms import ml_nms
from ..debug import debug_train, debug_test
from .utils import reduce_sum, _transpose
from .centernet_head import CenterNetHead
__all__ = ["CenterNet"]
INF = 100000000
@PROPOSAL_GENERATOR_REGISTRY.register()
class CenterNet(nn.Module):
@configurable
def __init__(self,
# input_shape: Dict[str, ShapeSpec],
in_channels=256,
*,
num_classes=80,
in_features=("p3", "p4", "p5", "p6", "p7"),
strides=(8, 16, 32, 64, 128),
score_thresh=0.05,
hm_min_overlap=0.8,
loc_loss_type='giou',
min_radius=4,
hm_focal_alpha=0.25,
hm_focal_beta=4,
loss_gamma=2.0,
reg_weight=2.0,
not_norm_reg=True,
with_agn_hm=False,
only_proposal=False,
as_proposal=False,
not_nms=False,
pos_weight=1.,
neg_weight=1.,
sigmoid_clamp=1e-4,
ignore_high_fp=-1.,
center_nms=False,
sizes_of_interest=[[0,80],[64,160],[128,320],[256,640],[512,10000000]],
more_pos=False,
more_pos_thresh=0.2,
more_pos_topk=9,
pre_nms_topk_train=1000,
pre_nms_topk_test=1000,
post_nms_topk_train=100,
post_nms_topk_test=100,
nms_thresh_train=0.6,
nms_thresh_test=0.6,
no_reduce=False,
not_clamp_box=False,
debug=False,
vis_thresh=0.5,
pixel_mean=[103.530,116.280,123.675],
pixel_std=[1.0,1.0,1.0],
device='cuda',
centernet_head=None,
):
super().__init__()
self.num_classes = num_classes
self.in_features = in_features
self.strides = strides
self.score_thresh = score_thresh
self.min_radius = min_radius
self.hm_focal_alpha = hm_focal_alpha
self.hm_focal_beta = hm_focal_beta
self.loss_gamma = loss_gamma
self.reg_weight = reg_weight
self.not_norm_reg = not_norm_reg
self.with_agn_hm = with_agn_hm
self.only_proposal = only_proposal
self.as_proposal = as_proposal
self.not_nms = not_nms
self.pos_weight = pos_weight
self.neg_weight = neg_weight
self.sigmoid_clamp = sigmoid_clamp
self.ignore_high_fp = ignore_high_fp
self.center_nms = center_nms
self.sizes_of_interest = sizes_of_interest
self.more_pos = more_pos
self.more_pos_thresh = more_pos_thresh
self.more_pos_topk = more_pos_topk
self.pre_nms_topk_train = pre_nms_topk_train
self.pre_nms_topk_test = pre_nms_topk_test
self.post_nms_topk_train = post_nms_topk_train
self.post_nms_topk_test = post_nms_topk_test
self.nms_thresh_train = nms_thresh_train
self.nms_thresh_test = nms_thresh_test
self.no_reduce = no_reduce
self.not_clamp_box = not_clamp_box
self.debug = debug
self.vis_thresh = vis_thresh
if self.center_nms:
self.not_nms = True
self.iou_loss = IOULoss(loc_loss_type)
assert (not self.only_proposal) or self.with_agn_hm
# delta for rendering heatmap
self.delta = (1 - hm_min_overlap) / (1 + hm_min_overlap)
if centernet_head is None:
self.centernet_head = CenterNetHead(
in_channels=in_channels,
num_levels=len(in_features),
with_agn_hm=with_agn_hm,
only_proposal=only_proposal)
else:
self.centernet_head = centernet_head
if self.debug:
pixel_mean = torch.Tensor(pixel_mean).to(
torch.device(device)).view(3, 1, 1)
pixel_std = torch.Tensor(pixel_std).to(
torch.device(device)).view(3, 1, 1)
self.denormalizer = lambda x: x * pixel_std + pixel_mean
@classmethod
def from_config(cls, cfg, input_shape):
ret = {
# 'input_shape': input_shape,
'in_channels': input_shape[
cfg.MODEL.CENTERNET.IN_FEATURES[0]].channels,
'num_classes': cfg.MODEL.CENTERNET.NUM_CLASSES,
'in_features': cfg.MODEL.CENTERNET.IN_FEATURES,
'strides': cfg.MODEL.CENTERNET.FPN_STRIDES,
'score_thresh': cfg.MODEL.CENTERNET.INFERENCE_TH,
'loc_loss_type': cfg.MODEL.CENTERNET.LOC_LOSS_TYPE,
'hm_min_overlap': cfg.MODEL.CENTERNET.HM_MIN_OVERLAP,
'min_radius': cfg.MODEL.CENTERNET.MIN_RADIUS,
'hm_focal_alpha': cfg.MODEL.CENTERNET.HM_FOCAL_ALPHA,
'hm_focal_beta': cfg.MODEL.CENTERNET.HM_FOCAL_BETA,
'loss_gamma': cfg.MODEL.CENTERNET.LOSS_GAMMA,
'reg_weight': cfg.MODEL.CENTERNET.REG_WEIGHT,
'not_norm_reg': cfg.MODEL.CENTERNET.NOT_NORM_REG,
'with_agn_hm': cfg.MODEL.CENTERNET.WITH_AGN_HM,
'only_proposal': cfg.MODEL.CENTERNET.ONLY_PROPOSAL,
'as_proposal': cfg.MODEL.CENTERNET.AS_PROPOSAL,
'not_nms': cfg.MODEL.CENTERNET.NOT_NMS,
'pos_weight': cfg.MODEL.CENTERNET.POS_WEIGHT,
'neg_weight': cfg.MODEL.CENTERNET.NEG_WEIGHT,
'sigmoid_clamp': cfg.MODEL.CENTERNET.SIGMOID_CLAMP,
'ignore_high_fp': cfg.MODEL.CENTERNET.IGNORE_HIGH_FP,
'center_nms': cfg.MODEL.CENTERNET.CENTER_NMS,
'sizes_of_interest': cfg.MODEL.CENTERNET.SOI,
'more_pos': cfg.MODEL.CENTERNET.MORE_POS,
'more_pos_thresh': cfg.MODEL.CENTERNET.MORE_POS_THRESH,
'more_pos_topk': cfg.MODEL.CENTERNET.MORE_POS_TOPK,
'pre_nms_topk_train': cfg.MODEL.CENTERNET.PRE_NMS_TOPK_TRAIN,
'pre_nms_topk_test': cfg.MODEL.CENTERNET.PRE_NMS_TOPK_TEST,
'post_nms_topk_train': cfg.MODEL.CENTERNET.POST_NMS_TOPK_TRAIN,
'post_nms_topk_test': cfg.MODEL.CENTERNET.POST_NMS_TOPK_TEST,
'nms_thresh_train': cfg.MODEL.CENTERNET.NMS_TH_TRAIN,
'nms_thresh_test': cfg.MODEL.CENTERNET.NMS_TH_TEST,
'no_reduce': cfg.MODEL.CENTERNET.NO_REDUCE,
'not_clamp_box': cfg.INPUT.NOT_CLAMP_BOX,
'debug': cfg.DEBUG,
'vis_thresh': cfg.VIS_THRESH,
'pixel_mean': cfg.MODEL.PIXEL_MEAN,
'pixel_std': cfg.MODEL.PIXEL_STD,
'device': cfg.MODEL.DEVICE,
'centernet_head': CenterNetHead(
cfg, [input_shape[f] for f in cfg.MODEL.CENTERNET.IN_FEATURES]),
}
return ret
def forward(self, images, features_dict, gt_instances):
features = [features_dict[f] for f in self.in_features]
clss_per_level, reg_pred_per_level, agn_hm_pred_per_level = \
self.centernet_head(features)
grids = self.compute_grids(features)
shapes_per_level = grids[0].new_tensor(
[(x.shape[2], x.shape[3]) for x in reg_pred_per_level])
if not self.training:
return self.inference(
images, clss_per_level, reg_pred_per_level,
agn_hm_pred_per_level, grids)
else:
pos_inds, labels, reg_targets, flattened_hms = \
self._get_ground_truth(
grids, shapes_per_level, gt_instances)
# logits_pred: M x F, reg_pred: M x 4, agn_hm_pred: M
logits_pred, reg_pred, agn_hm_pred = self._flatten_outputs(
clss_per_level, reg_pred_per_level, agn_hm_pred_per_level)
if self.more_pos:
# add more pixels as positive if \
# 1. they are within the center3x3 region of an object
# 2. their regression losses are small (<self.more_pos_thresh)
pos_inds, labels = self._add_more_pos(
reg_pred, gt_instances, shapes_per_level)
losses = self.losses(
pos_inds, labels, reg_targets, flattened_hms,
logits_pred, reg_pred, agn_hm_pred)
proposals = None
if self.only_proposal:
agn_hm_pred_per_level = [x.sigmoid() for x in agn_hm_pred_per_level]
proposals = self.predict_instances(
grids, agn_hm_pred_per_level, reg_pred_per_level,
images.image_sizes, [None for _ in agn_hm_pred_per_level])
elif self.as_proposal: # category specific bbox as agnostic proposals
clss_per_level = [x.sigmoid() for x in clss_per_level]
proposals = self.predict_instances(
grids, clss_per_level, reg_pred_per_level,
images.image_sizes, agn_hm_pred_per_level)
if self.only_proposal or self.as_proposal:
for p in range(len(proposals)):
proposals[p].proposal_boxes = proposals[p].get('pred_boxes')
proposals[p].objectness_logits = proposals[p].get('scores')
proposals[p].remove('pred_boxes')
proposals[p].remove('scores')
proposals[p].remove('pred_classes')
if self.debug:
debug_train(
[self.denormalizer(x) for x in images],
gt_instances, flattened_hms, reg_targets,
labels, pos_inds, shapes_per_level, grids, self.strides)
return proposals, losses
def losses(
self, pos_inds, labels, reg_targets, flattened_hms,
logits_pred, reg_pred, agn_hm_pred):
'''
Inputs:
pos_inds: N
labels: N
reg_targets: M x 4
flattened_hms: M x C
logits_pred: M x C
reg_pred: M x 4
agn_hm_pred: M x 1 or None
N: number of positive locations in all images
M: number of pixels from all FPN levels
C: number of classes
'''
assert (torch.isfinite(reg_pred).all().item())
num_pos_local = pos_inds.numel()
num_gpus = get_world_size()
if self.no_reduce:
total_num_pos = num_pos_local * num_gpus
else:
total_num_pos = reduce_sum(
pos_inds.new_tensor([num_pos_local])).item()
num_pos_avg = max(total_num_pos / num_gpus, 1.0)
losses = {}
if not self.only_proposal:
pos_loss, neg_loss = heatmap_focal_loss_jit(
logits_pred.float(), flattened_hms.float(), pos_inds, labels,
alpha=self.hm_focal_alpha,
beta=self.hm_focal_beta,
gamma=self.loss_gamma,
reduction='sum',
sigmoid_clamp=self.sigmoid_clamp,
ignore_high_fp=self.ignore_high_fp,
)
pos_loss = self.pos_weight * pos_loss / num_pos_avg
neg_loss = self.neg_weight * neg_loss / num_pos_avg
losses['loss_centernet_pos'] = pos_loss
losses['loss_centernet_neg'] = neg_loss
reg_inds = torch.nonzero(reg_targets.max(dim=1)[0] >= 0).squeeze(1)
reg_pred = reg_pred[reg_inds]
reg_targets_pos = reg_targets[reg_inds]
reg_weight_map = flattened_hms.max(dim=1)[0]
reg_weight_map = reg_weight_map[reg_inds]
reg_weight_map = reg_weight_map * 0 + 1 \
if self.not_norm_reg else reg_weight_map
if self.no_reduce:
reg_norm = max(reg_weight_map.sum(), 1)
else:
reg_norm = max(reduce_sum(reg_weight_map.sum()).item() / num_gpus, 1)
reg_loss = self.reg_weight * self.iou_loss(
reg_pred, reg_targets_pos, reg_weight_map,
reduction='sum') / reg_norm
losses['loss_centernet_loc'] = reg_loss
if self.with_agn_hm:
cat_agn_heatmap = flattened_hms.max(dim=1)[0] # M
agn_pos_loss, agn_neg_loss = binary_heatmap_focal_loss_jit(
agn_hm_pred.float(), cat_agn_heatmap.float(), pos_inds,
alpha=self.hm_focal_alpha,
beta=self.hm_focal_beta,
gamma=self.loss_gamma,
sigmoid_clamp=self.sigmoid_clamp,
ignore_high_fp=self.ignore_high_fp,
)
agn_pos_loss = self.pos_weight * agn_pos_loss / num_pos_avg
agn_neg_loss = self.neg_weight * agn_neg_loss / num_pos_avg
losses['loss_centernet_agn_pos'] = agn_pos_loss
losses['loss_centernet_agn_neg'] = agn_neg_loss
if self.debug:
print('losses', losses)
print('total_num_pos', total_num_pos)
return losses
def compute_grids(self, features):
grids = []
for level, feature in enumerate(features):
h, w = feature.size()[-2:]
shifts_x = torch.arange(
0, w * self.strides[level],
step=self.strides[level],
dtype=torch.float32, device=feature.device)
shifts_y = torch.arange(
0, h * self.strides[level],
step=self.strides[level],
dtype=torch.float32, device=feature.device)
shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x)
shift_x = shift_x.reshape(-1)
shift_y = shift_y.reshape(-1)
grids_per_level = torch.stack((shift_x, shift_y), dim=1) + \
self.strides[level] // 2
grids.append(grids_per_level)
return grids
def _get_ground_truth(self, grids, shapes_per_level, gt_instances):
'''
Input:
grids: list of tensors [(hl x wl, 2)]_l
shapes_per_level: list of tuples L x 2:
gt_instances: gt instances
Retuen:
pos_inds: N
labels: N
reg_targets: M x 4
flattened_hms: M x C or M x 1
N: number of objects in all images
M: number of pixels from all FPN levels
'''
# get positive pixel index
if not self.more_pos:
pos_inds, labels = self._get_label_inds(
gt_instances, shapes_per_level)
else:
pos_inds, labels = None, None
heatmap_channels = self.num_classes
L = len(grids)
num_loc_list = [len(loc) for loc in grids]
strides = torch.cat([
shapes_per_level.new_ones(num_loc_list[l]) * self.strides[l] \
for l in range(L)]).float() # M
reg_size_ranges = torch.cat([
shapes_per_level.new_tensor(self.sizes_of_interest[l]).float().view(
1, 2).expand(num_loc_list[l], 2) for l in range(L)]) # M x 2
grids = torch.cat(grids, dim=0) # M x 2
M = grids.shape[0]
reg_targets = []
flattened_hms = []
for i in range(len(gt_instances)): # images
boxes = gt_instances[i].gt_boxes.tensor # N x 4
area = gt_instances[i].gt_boxes.area() # N
gt_classes = gt_instances[i].gt_classes # N in [0, self.num_classes]
N = boxes.shape[0]
if N == 0:
reg_targets.append(grids.new_zeros((M, 4)) - INF)
flattened_hms.append(
grids.new_zeros((
M, 1 if self.only_proposal else heatmap_channels)))
continue
l = grids[:, 0].view(M, 1) - boxes[:, 0].view(1, N) # M x N
t = grids[:, 1].view(M, 1) - boxes[:, 1].view(1, N) # M x N
r = boxes[:, 2].view(1, N) - grids[:, 0].view(M, 1) # M x N
b = boxes[:, 3].view(1, N) - grids[:, 1].view(M, 1) # M x N
reg_target = torch.stack([l, t, r, b], dim=2) # M x N x 4
centers = ((boxes[:, [0, 1]] + boxes[:, [2, 3]]) / 2) # N x 2
centers_expanded = centers.view(1, N, 2).expand(M, N, 2) # M x N x 2
strides_expanded = strides.view(M, 1, 1).expand(M, N, 2)
centers_discret = ((centers_expanded / strides_expanded).int() * \
strides_expanded).float() + strides_expanded / 2 # M x N x 2
is_peak = (((grids.view(M, 1, 2).expand(M, N, 2) - \
centers_discret) ** 2).sum(dim=2) == 0) # M x N
is_in_boxes = reg_target.min(dim=2)[0] > 0 # M x N
is_center3x3 = self.get_center3x3(
grids, centers, strides) & is_in_boxes # M x N
is_cared_in_the_level = self.assign_reg_fpn(
reg_target, reg_size_ranges) # M x N
reg_mask = is_center3x3 & is_cared_in_the_level # M x N
dist2 = ((grids.view(M, 1, 2).expand(M, N, 2) - \
centers_expanded) ** 2).sum(dim=2) # M x N
dist2[is_peak] = 0
radius2 = self.delta ** 2 * 2 * area # N
radius2 = torch.clamp(
radius2, min=self.min_radius ** 2)
weighted_dist2 = dist2 / radius2.view(1, N).expand(M, N) # M x N
reg_target = self._get_reg_targets(
reg_target, weighted_dist2.clone(), reg_mask, area) # M x 4
if self.only_proposal:
flattened_hm = self._create_agn_heatmaps_from_dist(
weighted_dist2.clone()) # M x 1
else:
flattened_hm = self._create_heatmaps_from_dist(
weighted_dist2.clone(), gt_classes,
channels=heatmap_channels) # M x C
reg_targets.append(reg_target)
flattened_hms.append(flattened_hm)
# transpose im first training_targets to level first ones
reg_targets = _transpose(reg_targets, num_loc_list)
flattened_hms = _transpose(flattened_hms, num_loc_list)
for l in range(len(reg_targets)):
reg_targets[l] = reg_targets[l] / float(self.strides[l])
reg_targets = cat([x for x in reg_targets], dim=0) # MB x 4
flattened_hms = cat([x for x in flattened_hms], dim=0) # MB x C
return pos_inds, labels, reg_targets, flattened_hms
def _get_label_inds(self, gt_instances, shapes_per_level):
'''
Inputs:
gt_instances: [n_i], sum n_i = N
shapes_per_level: L x 2 [(h_l, w_l)]_L
Returns:
pos_inds: N'
labels: N'
'''
pos_inds = []
labels = []
L = len(self.strides)
B = len(gt_instances)
shapes_per_level = shapes_per_level.long()
loc_per_level = (shapes_per_level[:, 0] * shapes_per_level[:, 1]).long() # L
level_bases = []
s = 0
for l in range(L):
level_bases.append(s)
s = s + B * loc_per_level[l]
level_bases = shapes_per_level.new_tensor(level_bases).long() # L
strides_default = shapes_per_level.new_tensor(self.strides).float() # L
for im_i in range(B):
targets_per_im = gt_instances[im_i]
bboxes = targets_per_im.gt_boxes.tensor # n x 4
n = bboxes.shape[0]
centers = ((bboxes[:, [0, 1]] + bboxes[:, [2, 3]]) / 2) # n x 2
centers = centers.view(n, 1, 2).expand(n, L, 2).contiguous()
if self.not_clamp_box:
h, w = gt_instances[im_i]._image_size
centers[:, :, 0].clamp_(min=0).clamp_(max=w-1)
centers[:, :, 1].clamp_(min=0).clamp_(max=h-1)
strides = strides_default.view(1, L, 1).expand(n, L, 2)
centers_inds = (centers / strides).long() # n x L x 2
Ws = shapes_per_level[:, 1].view(1, L).expand(n, L)
pos_ind = level_bases.view(1, L).expand(n, L) + \
im_i * loc_per_level.view(1, L).expand(n, L) + \
centers_inds[:, :, 1] * Ws + \
centers_inds[:, :, 0] # n x L
is_cared_in_the_level = self.assign_fpn_level(bboxes)
pos_ind = pos_ind[is_cared_in_the_level].view(-1)
label = targets_per_im.gt_classes.view(
n, 1).expand(n, L)[is_cared_in_the_level].view(-1)
pos_inds.append(pos_ind) # n'
labels.append(label) # n'
pos_inds = torch.cat(pos_inds, dim=0).long()
labels = torch.cat(labels, dim=0)
return pos_inds, labels # N, N
def assign_fpn_level(self, boxes):
'''
Inputs:
boxes: n x 4
size_ranges: L x 2
Return:
is_cared_in_the_level: n x L
'''
size_ranges = boxes.new_tensor(
self.sizes_of_interest).view(len(self.sizes_of_interest), 2) # L x 2
crit = ((boxes[:, 2:] - boxes[:, :2]) **2).sum(dim=1) ** 0.5 / 2 # n
n, L = crit.shape[0], size_ranges.shape[0]
crit = crit.view(n, 1).expand(n, L)
size_ranges_expand = size_ranges.view(1, L, 2).expand(n, L, 2)
is_cared_in_the_level = (crit >= size_ranges_expand[:, :, 0]) & \
(crit <= size_ranges_expand[:, :, 1])
return is_cared_in_the_level
def assign_reg_fpn(self, reg_targets_per_im, size_ranges):
'''
TODO (Xingyi): merge it with assign_fpn_level
Inputs:
reg_targets_per_im: M x N x 4
size_ranges: M x 2
'''
crit = ((reg_targets_per_im[:, :, :2] + \
reg_targets_per_im[:, :, 2:])**2).sum(dim=2) ** 0.5 / 2 # M x N
is_cared_in_the_level = (crit >= size_ranges[:, [0]]) & \
(crit <= size_ranges[:, [1]])
return is_cared_in_the_level
def _get_reg_targets(self, reg_targets, dist, mask, area):
'''
reg_targets (M x N x 4): long tensor
dist (M x N)
is_*: M x N
'''
dist[mask == 0] = INF * 1.0
min_dist, min_inds = dist.min(dim=1) # M
reg_targets_per_im = reg_targets[
range(len(reg_targets)), min_inds] # M x N x 4 --> M x 4
reg_targets_per_im[min_dist == INF] = - INF
return reg_targets_per_im
def _create_heatmaps_from_dist(self, dist, labels, channels):
'''
dist: M x N
labels: N
return:
heatmaps: M x C
'''
heatmaps = dist.new_zeros((dist.shape[0], channels))
for c in range(channels):
inds = (labels == c) # N
if inds.int().sum() == 0:
continue
heatmaps[:, c] = torch.exp(-dist[:, inds].min(dim=1)[0])
zeros = heatmaps[:, c] < 1e-4
heatmaps[zeros, c] = 0
return heatmaps
def _create_agn_heatmaps_from_dist(self, dist):
'''
TODO (Xingyi): merge it with _create_heatmaps_from_dist
dist: M x N
return:
heatmaps: M x 1
'''
heatmaps = dist.new_zeros((dist.shape[0], 1))
heatmaps[:, 0] = torch.exp(-dist.min(dim=1)[0])
zeros = heatmaps < 1e-4
heatmaps[zeros] = 0
return heatmaps
def _flatten_outputs(self, clss, reg_pred, agn_hm_pred):
# Reshape: (N, F, Hl, Wl) -> (N, Hl, Wl, F) -> (sum_l N*Hl*Wl, F)
clss = cat([x.permute(0, 2, 3, 1).reshape(-1, x.shape[1]) \
for x in clss], dim=0) if clss[0] is not None else None
reg_pred = cat(
[x.permute(0, 2, 3, 1).reshape(-1, 4) for x in reg_pred], dim=0)
agn_hm_pred = cat([x.permute(0, 2, 3, 1).reshape(-1) \
for x in agn_hm_pred], dim=0) if self.with_agn_hm else None
return clss, reg_pred, agn_hm_pred
def get_center3x3(self, locations, centers, strides):
'''
Inputs:
locations: M x 2
centers: N x 2
strides: M
'''
M, N = locations.shape[0], centers.shape[0]
locations_expanded = locations.view(M, 1, 2).expand(M, N, 2) # M x N x 2
centers_expanded = centers.view(1, N, 2).expand(M, N, 2) # M x N x 2
strides_expanded = strides.view(M, 1, 1).expand(M, N, 2) # M x N
centers_discret = ((centers_expanded / strides_expanded).int() * \
strides_expanded).float() + strides_expanded / 2 # M x N x 2
dist_x = (locations_expanded[:, :, 0] - centers_discret[:, :, 0]).abs()
dist_y = (locations_expanded[:, :, 1] - centers_discret[:, :, 1]).abs()
return (dist_x <= strides_expanded[:, :, 0]) & \
(dist_y <= strides_expanded[:, :, 0])
@torch.no_grad()
def inference(self, images, clss_per_level, reg_pred_per_level,
agn_hm_pred_per_level, grids):
logits_pred = [x.sigmoid() if x is not None else None \
for x in clss_per_level]
agn_hm_pred_per_level = [x.sigmoid() if x is not None else None \
for x in agn_hm_pred_per_level]
if self.only_proposal:
proposals = self.predict_instances(
grids, agn_hm_pred_per_level, reg_pred_per_level,
images.image_sizes, [None for _ in agn_hm_pred_per_level])
else:
proposals = self.predict_instances(
grids, logits_pred, reg_pred_per_level,
images.image_sizes, agn_hm_pred_per_level)
if self.as_proposal or self.only_proposal:
for p in range(len(proposals)):
proposals[p].proposal_boxes = proposals[p].get('pred_boxes')
proposals[p].objectness_logits = proposals[p].get('scores')
proposals[p].remove('pred_boxes')
if self.debug:
debug_test(
[self.denormalizer(x) for x in images],
logits_pred, reg_pred_per_level,
agn_hm_pred_per_level, preds=proposals,
vis_thresh=self.vis_thresh,
debug_show_name=False)
return proposals, {}
@torch.no_grad()
def predict_instances(
self, grids, logits_pred, reg_pred, image_sizes, agn_hm_pred,
is_proposal=False):
sampled_boxes = []
for l in range(len(grids)):
sampled_boxes.append(self.predict_single_level(
grids[l], logits_pred[l], reg_pred[l] * self.strides[l],
image_sizes, agn_hm_pred[l], l, is_proposal=is_proposal))
boxlists = list(zip(*sampled_boxes))
boxlists = [Instances.cat(boxlist) for boxlist in boxlists]
boxlists = self.nms_and_topK(
boxlists, nms=not self.not_nms)
return boxlists
@torch.no_grad()
def predict_single_level(
self, grids, heatmap, reg_pred, image_sizes, agn_hm, level,
is_proposal=False):
N, C, H, W = heatmap.shape
# put in the same format as grids
if self.center_nms:
heatmap_nms = nn.functional.max_pool2d(
heatmap, (3, 3), stride=1, padding=1)
heatmap = heatmap * (heatmap_nms == heatmap).float()
heatmap = heatmap.permute(0, 2, 3, 1) # N x H x W x C
heatmap = heatmap.reshape(N, -1, C) # N x HW x C
box_regression = reg_pred.view(N, 4, H, W).permute(0, 2, 3, 1) # N x H x W x 4
box_regression = box_regression.reshape(N, -1, 4)
candidate_inds = heatmap > self.score_thresh # 0.05
pre_nms_top_n = candidate_inds.view(N, -1).sum(1) # N
pre_nms_topk = self.pre_nms_topk_train if self.training else self.pre_nms_topk_test
pre_nms_top_n = pre_nms_top_n.clamp(max=pre_nms_topk) # N
if agn_hm is not None:
agn_hm = agn_hm.view(N, 1, H, W).permute(0, 2, 3, 1)
agn_hm = agn_hm.reshape(N, -1)
heatmap = heatmap * agn_hm[:, :, None]
results = []
for i in range(N):
per_box_cls = heatmap[i] # HW x C
per_candidate_inds = candidate_inds[i] # n
per_box_cls = per_box_cls[per_candidate_inds] # n
per_candidate_nonzeros = per_candidate_inds.nonzero() # n
per_box_loc = per_candidate_nonzeros[:, 0] # n
per_class = per_candidate_nonzeros[:, 1] # n
per_box_regression = box_regression[i] # HW x 4
per_box_regression = per_box_regression[per_box_loc] # n x 4
per_grids = grids[per_box_loc] # n x 2
per_pre_nms_top_n = pre_nms_top_n[i] # 1
if per_candidate_inds.sum().item() > per_pre_nms_top_n.item():
per_box_cls, top_k_indices = \
per_box_cls.topk(per_pre_nms_top_n, sorted=False)
per_class = per_class[top_k_indices]
per_box_regression = per_box_regression[top_k_indices]
per_grids = per_grids[top_k_indices]
detections = torch.stack([
per_grids[:, 0] - per_box_regression[:, 0],
per_grids[:, 1] - per_box_regression[:, 1],
per_grids[:, 0] + per_box_regression[:, 2],
per_grids[:, 1] + per_box_regression[:, 3],
], dim=1) # n x 4
# avoid invalid boxes in RoI heads
detections[:, 2] = torch.max(detections[:, 2], detections[:, 0] + 0.01)
detections[:, 3] = torch.max(detections[:, 3], detections[:, 1] + 0.01)
boxlist = Instances(image_sizes[i])
boxlist.scores = torch.sqrt(per_box_cls) \
if self.with_agn_hm else per_box_cls # n
# import pdb; pdb.set_trace()
boxlist.pred_boxes = Boxes(detections)
boxlist.pred_classes = per_class
results.append(boxlist)
return results
@torch.no_grad()
def nms_and_topK(self, boxlists, nms=True):
num_images = len(boxlists)
results = []
for i in range(num_images):
nms_thresh = self.nms_thresh_train if self.training else \
self.nms_thresh_test
result = ml_nms(boxlists[i], nms_thresh) if nms else boxlists[i]
if self.debug:
print('#proposals before nms', len(boxlists[i]))
print('#proposals after nms', len(result))
num_dets = len(result)
post_nms_topk = self.post_nms_topk_train if self.training else \
self.post_nms_topk_test
if num_dets > post_nms_topk:
cls_scores = result.scores
image_thresh, _ = torch.kthvalue(
cls_scores.float().cpu(),
num_dets - post_nms_topk + 1
)
keep = cls_scores >= image_thresh.item()
keep = torch.nonzero(keep).squeeze(1)
result = result[keep]
if self.debug:
print('#proposals after filter', len(result))
results.append(result)
return results
@torch.no_grad()
def _add_more_pos(self, reg_pred, gt_instances, shapes_per_level):
labels, level_masks, c33_inds, c33_masks, c33_regs = \
self._get_c33_inds(gt_instances, shapes_per_level)
N, L, K = labels.shape[0], len(self.strides), 9
c33_inds[c33_masks == 0] = 0
reg_pred_c33 = reg_pred[c33_inds].detach() # N x L x K
invalid_reg = c33_masks == 0
c33_regs_expand = c33_regs.view(N * L * K, 4).clamp(min=0)
if N > 0:
with torch.no_grad():
c33_reg_loss = self.iou_loss(
reg_pred_c33.view(N * L * K, 4),
c33_regs_expand, None,
reduction='none').view(N, L, K).detach() # N x L x K
else:
c33_reg_loss = reg_pred_c33.new_zeros((N, L, K)).detach()
c33_reg_loss[invalid_reg] = INF # N x L x K
c33_reg_loss.view(N * L, K)[level_masks.view(N * L), 4] = 0 # real center
c33_reg_loss = c33_reg_loss.view(N, L * K)
if N == 0:
loss_thresh = c33_reg_loss.new_ones((N)).float()
else:
loss_thresh = torch.kthvalue(
c33_reg_loss, self.more_pos_topk, dim=1)[0] # N
loss_thresh[loss_thresh > self.more_pos_thresh] = self.more_pos_thresh # N
new_pos = c33_reg_loss.view(N, L, K) < \
loss_thresh.view(N, 1, 1).expand(N, L, K)
pos_inds = c33_inds[new_pos].view(-1) # P
labels = labels.view(N, 1, 1).expand(N, L, K)[new_pos].view(-1)
return pos_inds, labels
@torch.no_grad()
def _get_c33_inds(self, gt_instances, shapes_per_level):
'''
TODO (Xingyi): The current implementation is ugly. Refactor.
Get the center (and the 3x3 region near center) locations of each objects
Inputs:
gt_instances: [n_i], sum n_i = N
shapes_per_level: L x 2 [(h_l, w_l)]_L
'''
labels = []
level_masks = []
c33_inds = []
c33_masks = []
c33_regs = []
L = len(self.strides)
B = len(gt_instances)
shapes_per_level = shapes_per_level.long()
loc_per_level = (shapes_per_level[:, 0] * shapes_per_level[:, 1]).long() # L
level_bases = []
s = 0
for l in range(L):
level_bases.append(s)
s = s + B * loc_per_level[l]
level_bases = shapes_per_level.new_tensor(level_bases).long() # L
strides_default = shapes_per_level.new_tensor(self.strides).float() # L
K = 9
dx = shapes_per_level.new_tensor([-1, 0, 1, -1, 0, 1, -1, 0, 1]).long()
dy = shapes_per_level.new_tensor([-1, -1, -1, 0, 0, 0, 1, 1, 1]).long()
for im_i in range(B):
targets_per_im = gt_instances[im_i]
bboxes = targets_per_im.gt_boxes.tensor # n x 4
n = bboxes.shape[0]
if n == 0:
continue
centers = ((bboxes[:, [0, 1]] + bboxes[:, [2, 3]]) / 2) # n x 2
centers = centers.view(n, 1, 2).expand(n, L, 2)
strides = strides_default.view(1, L, 1).expand(n, L, 2) #
centers_inds = (centers / strides).long() # n x L x 2
center_grids = centers_inds * strides + strides // 2# n x L x 2
l = center_grids[:, :, 0] - bboxes[:, 0].view(n, 1).expand(n, L)
t = center_grids[:, :, 1] - bboxes[:, 1].view(n, 1).expand(n, L)
r = bboxes[:, 2].view(n, 1).expand(n, L) - center_grids[:, :, 0]
b = bboxes[:, 3].view(n, 1).expand(n, L) - center_grids[:, :, 1] # n x L
reg = torch.stack([l, t, r, b], dim=2) # n x L x 4
reg = reg / strides_default.view(1, L, 1).expand(n, L, 4).float()
Ws = shapes_per_level[:, 1].view(1, L).expand(n, L)
Hs = shapes_per_level[:, 0].view(1, L).expand(n, L)
expand_Ws = Ws.view(n, L, 1).expand(n, L, K)
expand_Hs = Hs.view(n, L, 1).expand(n, L, K)
label = targets_per_im.gt_classes.view(n).clone()
mask = reg.min(dim=2)[0] >= 0 # n x L
mask = mask & self.assign_fpn_level(bboxes)
labels.append(label) # n
level_masks.append(mask) # n x L
Dy = dy.view(1, 1, K).expand(n, L, K)
Dx = dx.view(1, 1, K).expand(n, L, K)
c33_ind = level_bases.view(1, L, 1).expand(n, L, K) + \
im_i * loc_per_level.view(1, L, 1).expand(n, L, K) + \
(centers_inds[:, :, 1:2].expand(n, L, K) + Dy) * expand_Ws + \
(centers_inds[:, :, 0:1].expand(n, L, K) + Dx) # n x L x K
c33_mask = \
((centers_inds[:, :, 1:2].expand(n, L, K) + dy) < expand_Hs) & \
((centers_inds[:, :, 1:2].expand(n, L, K) + dy) >= 0) & \
((centers_inds[:, :, 0:1].expand(n, L, K) + dx) < expand_Ws) & \
((centers_inds[:, :, 0:1].expand(n, L, K) + dx) >= 0)
# TODO (Xingyi): think about better way to implement this
# Currently it hard codes the 3x3 region
c33_reg = reg.view(n, L, 1, 4).expand(n, L, K, 4).clone()
c33_reg[:, :, [0, 3, 6], 0] -= 1
c33_reg[:, :, [0, 3, 6], 2] += 1
c33_reg[:, :, [2, 5, 8], 0] += 1
c33_reg[:, :, [2, 5, 8], 2] -= 1
c33_reg[:, :, [0, 1, 2], 1] -= 1
c33_reg[:, :, [0, 1, 2], 3] += 1
c33_reg[:, :, [6, 7, 8], 1] += 1
c33_reg[:, :, [6, 7, 8], 3] -= 1
c33_mask = c33_mask & (c33_reg.min(dim=3)[0] >= 0) # n x L x K
c33_inds.append(c33_ind)
c33_masks.append(c33_mask)
c33_regs.append(c33_reg)
if len(level_masks) > 0:
labels = torch.cat(labels, dim=0)
level_masks = torch.cat(level_masks, dim=0)
c33_inds = torch.cat(c33_inds, dim=0).long()
c33_regs = torch.cat(c33_regs, dim=0)
c33_masks = torch.cat(c33_masks, dim=0)
else:
labels = shapes_per_level.new_zeros((0)).long()
level_masks = shapes_per_level.new_zeros((0, L)).bool()
c33_inds = shapes_per_level.new_zeros((0, L, K)).long()
c33_regs = shapes_per_level.new_zeros((0, L, K, 4)).float()
c33_masks = shapes_per_level.new_zeros((0, L, K)).bool()
return labels, level_masks, c33_inds, c33_masks, c33_regs # N x L, N x L x K
|