File size: 4,043 Bytes
8075387
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import torch
from torch import nn


class IOULoss(nn.Module):
    def __init__(self, loc_loss_type='iou'):
        super(IOULoss, self).__init__()
        self.loc_loss_type = loc_loss_type

    def forward(self, pred, target, weight=None, reduction='sum'):
        pred_left = pred[:, 0]
        pred_top = pred[:, 1]
        pred_right = pred[:, 2]
        pred_bottom = pred[:, 3]

        target_left = target[:, 0]
        target_top = target[:, 1]
        target_right = target[:, 2]
        target_bottom = target[:, 3]

        target_aera = (target_left + target_right) * \
                      (target_top + target_bottom)
        pred_aera = (pred_left + pred_right) * \
                    (pred_top + pred_bottom)

        w_intersect = torch.min(pred_left, target_left) + \
                      torch.min(pred_right, target_right)
        h_intersect = torch.min(pred_bottom, target_bottom) + \
                      torch.min(pred_top, target_top)

        g_w_intersect = torch.max(pred_left, target_left) + \
                        torch.max(pred_right, target_right)
        g_h_intersect = torch.max(pred_bottom, target_bottom) + \
                        torch.max(pred_top, target_top)
        ac_uion = g_w_intersect * g_h_intersect

        area_intersect = w_intersect * h_intersect
        area_union = target_aera + pred_aera - area_intersect

        ious = (area_intersect + 1.0) / (area_union + 1.0)
        gious = ious - (ac_uion - area_union) / ac_uion
        if self.loc_loss_type == 'iou':
            losses = -torch.log(ious)
        elif self.loc_loss_type == 'linear_iou':
            losses = 1 - ious
        elif self.loc_loss_type == 'giou':
            losses = 1 - gious
        else:
            raise NotImplementedError

        if weight is not None:
            losses = losses * weight
        else:
            losses = losses

        if reduction == 'sum':
            return losses.sum()
        elif reduction == 'batch':
            return losses.sum(dim=[1])
        elif reduction == 'none':
            return losses
        else:
            raise NotImplementedError


def giou_loss(
    boxes1: torch.Tensor,
    boxes2: torch.Tensor,
    reduction: str = "none",
    eps: float = 1e-7,
) -> torch.Tensor:
    """
    Generalized Intersection over Union Loss (Hamid Rezatofighi et. al)
    https://arxiv.org/abs/1902.09630
    Gradient-friendly IoU loss with an additional penalty that is non-zero when the
    boxes do not overlap and scales with the size of their smallest enclosing box.
    This loss is symmetric, so the boxes1 and boxes2 arguments are interchangeable.
    Args:
        boxes1, boxes2 (Tensor): box locations in XYXY format, shape (N, 4) or (4,).
        reduction: 'none' | 'mean' | 'sum'
                 'none': No reduction will be applied to the output.
                 'mean': The output will be averaged.
                 'sum': The output will be summed.
        eps (float): small number to prevent division by zero
    """

    x1, y1, x2, y2 = boxes1.unbind(dim=-1)
    x1g, y1g, x2g, y2g = boxes2.unbind(dim=-1)

    assert (x2 >= x1).all(), "bad box: x1 larger than x2"
    assert (y2 >= y1).all(), "bad box: y1 larger than y2"

    # Intersection keypoints
    xkis1 = torch.max(x1, x1g)
    ykis1 = torch.max(y1, y1g)
    xkis2 = torch.min(x2, x2g)
    ykis2 = torch.min(y2, y2g)

    intsctk = torch.zeros_like(x1)
    mask = (ykis2 > ykis1) & (xkis2 > xkis1)
    intsctk[mask] = (xkis2[mask] - xkis1[mask]) * (ykis2[mask] - ykis1[mask])
    unionk = (x2 - x1) * (y2 - y1) + (x2g - x1g) * (y2g - y1g) - intsctk
    iouk = intsctk / (unionk + eps)

    # smallest enclosing box
    xc1 = torch.min(x1, x1g)
    yc1 = torch.min(y1, y1g)
    xc2 = torch.max(x2, x2g)
    yc2 = torch.max(y2, y2g)

    area_c = (xc2 - xc1) * (yc2 - yc1)
    miouk = iouk - ((area_c - unionk) / (area_c + eps))

    loss = 1 - miouk

    if reduction == "mean":
        loss = loss.mean()
    elif reduction == "sum":
        loss = loss.sum()

    return loss