File size: 4,159 Bytes
8075387
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
# ------------------------------------------------------------------------
# Deformable DETR
# Copyright (c) 2020 SenseTime. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
# Modified from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# ------------------------------------------------------------------------

import json
from pathlib import Path

import numpy as np
import torch
from PIL import Image

from panopticapi.utils import rgb2id
from util.box_ops import masks_to_boxes

from .coco import make_coco_transforms


class CocoPanoptic:
    def __init__(self, img_folder, ann_folder, ann_file, transforms=None, return_masks=True):
        with open(ann_file, 'r') as f:
            self.coco = json.load(f)

        # sort 'images' field so that they are aligned with 'annotations'
        # i.e., in alphabetical order
        self.coco['images'] = sorted(self.coco['images'], key=lambda x: x['id'])
        # sanity check
        if "annotations" in self.coco:
            for img, ann in zip(self.coco['images'], self.coco['annotations']):
                assert img['file_name'][:-4] == ann['file_name'][:-4]

        self.img_folder = img_folder
        self.ann_folder = ann_folder
        self.ann_file = ann_file
        self.transforms = transforms
        self.return_masks = return_masks

    def __getitem__(self, idx):
        ann_info = self.coco['annotations'][idx] if "annotations" in self.coco else self.coco['images'][idx]
        img_path = Path(self.img_folder) / ann_info['file_name'].replace('.png', '.jpg')
        ann_path = Path(self.ann_folder) / ann_info['file_name']

        img = Image.open(img_path).convert('RGB')
        w, h = img.size
        if "segments_info" in ann_info:
            masks = np.asarray(Image.open(ann_path), dtype=np.uint32)
            masks = rgb2id(masks)

            ids = np.array([ann['id'] for ann in ann_info['segments_info']])
            masks = masks == ids[:, None, None]

            masks = torch.as_tensor(masks, dtype=torch.uint8)
            labels = torch.tensor([ann['category_id'] for ann in ann_info['segments_info']], dtype=torch.int64)

        target = {}
        target['image_id'] = torch.tensor([ann_info['image_id'] if "image_id" in ann_info else ann_info["id"]])
        if self.return_masks:
            target['masks'] = masks
        target['labels'] = labels

        target["boxes"] = masks_to_boxes(masks)

        target['size'] = torch.as_tensor([int(h), int(w)])
        target['orig_size'] = torch.as_tensor([int(h), int(w)])
        if "segments_info" in ann_info:
            for name in ['iscrowd', 'area']:
                target[name] = torch.tensor([ann[name] for ann in ann_info['segments_info']])

        if self.transforms is not None:
            img, target = self.transforms(img, target)

        return img, target

    def __len__(self):
        return len(self.coco['images'])

    def get_height_and_width(self, idx):
        img_info = self.coco['images'][idx]
        height = img_info['height']
        width = img_info['width']
        return height, width


def build(image_set, args):
    img_folder_root = Path(args.coco_path)
    ann_folder_root = Path(args.coco_panoptic_path)
    assert img_folder_root.exists(), f'provided COCO path {img_folder_root} does not exist'
    assert ann_folder_root.exists(), f'provided COCO path {ann_folder_root} does not exist'
    mode = 'panoptic'
    PATHS = {
        "train": ("train2017", Path("annotations") / f'{mode}_train2017.json'),
        "val": ("val2017", Path("annotations") / f'{mode}_val2017.json'),
    }

    img_folder, ann_file = PATHS[image_set]
    img_folder_path = img_folder_root / img_folder
    ann_folder = ann_folder_root / f'{mode}_{img_folder}'
    ann_file = ann_folder_root / ann_file

    dataset = CocoPanoptic(img_folder_path, ann_folder, ann_file,
                           transforms=make_coco_transforms(image_set), return_masks=args.masks)

    return dataset