Spaces:
Runtime error
Runtime error
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved | |
import argparse | |
import glob | |
import multiprocessing as mp | |
import os | |
import time | |
import cv2 | |
import tqdm | |
from detectron2.config import get_cfg | |
from detectron2.data.detection_utils import read_image | |
from detectron2.utils.logger import setup_logger | |
from predictor import VisualizationDemo | |
from centernet.config import add_centernet_config | |
# constants | |
WINDOW_NAME = "CenterNet2 detections" | |
from detectron2.utils.video_visualizer import VideoVisualizer | |
from detectron2.utils.visualizer import ColorMode, Visualizer | |
from detectron2.data import MetadataCatalog | |
def setup_cfg(args): | |
# load config from file and command-line arguments | |
cfg = get_cfg() | |
add_centernet_config(cfg) | |
cfg.merge_from_file(args.config_file) | |
cfg.merge_from_list(args.opts) | |
# Set score_threshold for builtin models | |
cfg.MODEL.RETINANET.SCORE_THRESH_TEST = args.confidence_threshold | |
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = args.confidence_threshold | |
if cfg.MODEL.META_ARCHITECTURE in ['ProposalNetwork', 'CenterNetDetector']: | |
cfg.MODEL.CENTERNET.INFERENCE_TH = args.confidence_threshold | |
cfg.MODEL.CENTERNET.NMS_TH = cfg.MODEL.ROI_HEADS.NMS_THRESH_TEST | |
cfg.MODEL.PANOPTIC_FPN.COMBINE.INSTANCES_CONFIDENCE_THRESH = args.confidence_threshold | |
cfg.freeze() | |
return cfg | |
def get_parser(): | |
parser = argparse.ArgumentParser(description="Detectron2 demo for builtin models") | |
parser.add_argument( | |
"--config-file", | |
default="configs/quick_schedules/mask_rcnn_R_50_FPN_inference_acc_test.yaml", | |
metavar="FILE", | |
help="path to config file", | |
) | |
parser.add_argument("--webcam", action="store_true", help="Take inputs from webcam.") | |
parser.add_argument("--video-input", help="Path to video file.") | |
parser.add_argument("--input", nargs="+", help="A list of space separated input images") | |
parser.add_argument( | |
"--output", | |
help="A file or directory to save output visualizations. " | |
"If not given, will show output in an OpenCV window.", | |
) | |
parser.add_argument( | |
"--confidence-threshold", | |
type=float, | |
default=0.3, | |
help="Minimum score for instance predictions to be shown", | |
) | |
parser.add_argument( | |
"--opts", | |
help="Modify config options using the command-line 'KEY VALUE' pairs", | |
default=[], | |
nargs=argparse.REMAINDER, | |
) | |
return parser | |
if __name__ == "__main__": | |
mp.set_start_method("spawn", force=True) | |
args = get_parser().parse_args() | |
logger = setup_logger() | |
logger.info("Arguments: " + str(args)) | |
cfg = setup_cfg(args) | |
demo = VisualizationDemo(cfg) | |
output_file = None | |
if args.input: | |
if len(args.input) == 1: | |
args.input = glob.glob(os.path.expanduser(args.input[0])) | |
files = os.listdir(args.input[0]) | |
args.input = [args.input[0] + x for x in files] | |
assert args.input, "The input path(s) was not found" | |
visualizer = VideoVisualizer( | |
MetadataCatalog.get( | |
cfg.DATASETS.TEST[0] if len(cfg.DATASETS.TEST) else "__unused" | |
), | |
instance_mode=ColorMode.IMAGE) | |
for path in tqdm.tqdm(args.input, disable=not args.output): | |
# use PIL, to be consistent with evaluation | |
img = read_image(path, format="BGR") | |
start_time = time.time() | |
predictions, visualized_output = demo.run_on_image( | |
img, visualizer=visualizer) | |
if 'instances' in predictions: | |
logger.info( | |
"{}: detected {} instances in {:.2f}s".format( | |
path, len(predictions["instances"]), time.time() - start_time | |
) | |
) | |
else: | |
logger.info( | |
"{}: detected {} instances in {:.2f}s".format( | |
path, len(predictions["proposals"]), time.time() - start_time | |
) | |
) | |
if args.output: | |
if os.path.isdir(args.output): | |
assert os.path.isdir(args.output), args.output | |
out_filename = os.path.join(args.output, os.path.basename(path)) | |
visualized_output.save(out_filename) | |
else: | |
# assert len(args.input) == 1, "Please specify a directory with args.output" | |
# out_filename = args.output | |
if output_file is None: | |
width = visualized_output.get_image().shape[1] | |
height = visualized_output.get_image().shape[0] | |
frames_per_second = 15 | |
output_file = cv2.VideoWriter( | |
filename=args.output, | |
# some installation of opencv may not support x264 (due to its license), | |
# you can try other format (e.g. MPEG) | |
fourcc=cv2.VideoWriter_fourcc(*"x264"), | |
fps=float(frames_per_second), | |
frameSize=(width, height), | |
isColor=True, | |
) | |
output_file.write(visualized_output.get_image()[:, :, ::-1]) | |
else: | |
# cv2.namedWindow(WINDOW_NAME, cv2.WINDOW_NORMAL) | |
cv2.imshow(WINDOW_NAME, visualized_output.get_image()[:, :, ::-1]) | |
if cv2.waitKey(1 ) == 27: | |
break # esc to quit | |
elif args.webcam: | |
assert args.input is None, "Cannot have both --input and --webcam!" | |
cam = cv2.VideoCapture(0) | |
for vis in tqdm.tqdm(demo.run_on_video(cam)): | |
cv2.namedWindow(WINDOW_NAME, cv2.WINDOW_NORMAL) | |
cv2.imshow(WINDOW_NAME, vis) | |
if cv2.waitKey(1) == 27: | |
break # esc to quit | |
cv2.destroyAllWindows() | |
elif args.video_input: | |
video = cv2.VideoCapture(args.video_input) | |
width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
frames_per_second = 15 # video.get(cv2.CAP_PROP_FPS) | |
num_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) | |
basename = os.path.basename(args.video_input) | |
if args.output: | |
if os.path.isdir(args.output): | |
output_fname = os.path.join(args.output, basename) | |
output_fname = os.path.splitext(output_fname)[0] + ".mkv" | |
else: | |
output_fname = args.output | |
# assert not os.path.isfile(output_fname), output_fname | |
output_file = cv2.VideoWriter( | |
filename=output_fname, | |
# some installation of opencv may not support x264 (due to its license), | |
# you can try other format (e.g. MPEG) | |
fourcc=cv2.VideoWriter_fourcc(*"x264"), | |
fps=float(frames_per_second), | |
frameSize=(width, height), | |
isColor=True, | |
) | |
assert os.path.isfile(args.video_input) | |
for vis_frame in tqdm.tqdm(demo.run_on_video(video), total=num_frames): | |
if args.output: | |
output_file.write(vis_frame) | |
cv2.namedWindow(basename, cv2.WINDOW_NORMAL) | |
cv2.imshow(basename, vis_frame) | |
if cv2.waitKey(1) == 27: | |
break # esc to quit | |
video.release() | |
if args.output: | |
output_file.release() | |
else: | |
cv2.destroyAllWindows() | |