import numpy as np import math from os.path import join import fvcore.nn.weight_init as weight_init import torch import torch.nn.functional as F from torch import nn import torch.utils.model_zoo as model_zoo from detectron2.modeling.backbone.resnet import ( BasicStem, BottleneckBlock, DeformBottleneckBlock) from detectron2.layers import ( Conv2d, DeformConv, FrozenBatchNorm2d, ModulatedDeformConv, ShapeSpec, get_norm, ) from detectron2.modeling.backbone.backbone import Backbone from detectron2.modeling.backbone.build import BACKBONE_REGISTRY from detectron2.modeling.backbone.fpn import FPN __all__ = [ "BottleneckBlock", "DeformBottleneckBlock", "BasicStem", ] DCNV1 = False HASH = { 34: 'ba72cf86', 60: '24839fc4', } def get_model_url(data, name, hash): return join('http://dl.yf.io/dla/models', data, '{}-{}.pth'.format(name, hash)) class BasicBlock(nn.Module): def __init__(self, inplanes, planes, stride=1, dilation=1, norm='BN'): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=dilation, bias=False, dilation=dilation) self.bn1 = get_norm(norm, planes) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=dilation, bias=False, dilation=dilation) self.bn2 = get_norm(norm, planes) self.stride = stride def forward(self, x, residual=None): if residual is None: residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out += residual out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 2 def __init__(self, inplanes, planes, stride=1, dilation=1, norm='BN'): super(Bottleneck, self).__init__() expansion = Bottleneck.expansion bottle_planes = planes // expansion self.conv1 = nn.Conv2d(inplanes, bottle_planes, kernel_size=1, bias=False) self.bn1 = get_norm(norm, bottle_planes) self.conv2 = nn.Conv2d(bottle_planes, bottle_planes, kernel_size=3, stride=stride, padding=dilation, bias=False, dilation=dilation) self.bn2 = get_norm(norm, bottle_planes) self.conv3 = nn.Conv2d(bottle_planes, planes, kernel_size=1, bias=False) self.bn3 = get_norm(norm, planes) self.relu = nn.ReLU(inplace=True) self.stride = stride def forward(self, x, residual=None): if residual is None: residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) out += residual out = self.relu(out) return out class Root(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, residual, norm='BN'): super(Root, self).__init__() self.conv = nn.Conv2d( in_channels, out_channels, 1, stride=1, bias=False, padding=(kernel_size - 1) // 2) self.bn = get_norm(norm, out_channels) self.relu = nn.ReLU(inplace=True) self.residual = residual def forward(self, *x): children = x x = self.conv(torch.cat(x, 1)) x = self.bn(x) if self.residual: x += children[0] x = self.relu(x) return x class Tree(nn.Module): def __init__(self, levels, block, in_channels, out_channels, stride=1, level_root=False, root_dim=0, root_kernel_size=1, dilation=1, root_residual=False, norm='BN'): super(Tree, self).__init__() if root_dim == 0: root_dim = 2 * out_channels if level_root: root_dim += in_channels if levels == 1: self.tree1 = block(in_channels, out_channels, stride, dilation=dilation, norm=norm) self.tree2 = block(out_channels, out_channels, 1, dilation=dilation, norm=norm) else: self.tree1 = Tree(levels - 1, block, in_channels, out_channels, stride, root_dim=0, root_kernel_size=root_kernel_size, dilation=dilation, root_residual=root_residual, norm=norm) self.tree2 = Tree(levels - 1, block, out_channels, out_channels, root_dim=root_dim + out_channels, root_kernel_size=root_kernel_size, dilation=dilation, root_residual=root_residual, norm=norm) if levels == 1: self.root = Root(root_dim, out_channels, root_kernel_size, root_residual, norm=norm) self.level_root = level_root self.root_dim = root_dim self.downsample = None self.project = None self.levels = levels if stride > 1: self.downsample = nn.MaxPool2d(stride, stride=stride) if in_channels != out_channels: self.project = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, bias=False), get_norm(norm, out_channels) ) def forward(self, x, residual=None, children=None): children = [] if children is None else children bottom = self.downsample(x) if self.downsample else x residual = self.project(bottom) if self.project else bottom if self.level_root: children.append(bottom) x1 = self.tree1(x, residual) if self.levels == 1: x2 = self.tree2(x1) x = self.root(x2, x1, *children) else: children.append(x1) x = self.tree2(x1, children=children) return x class DLA(nn.Module): def __init__(self, num_layers, levels, channels, block=BasicBlock, residual_root=False, norm='BN'): """ Args: """ super(DLA, self).__init__() self.norm = norm self.channels = channels self.base_layer = nn.Sequential( nn.Conv2d(3, channels[0], kernel_size=7, stride=1, padding=3, bias=False), get_norm(self.norm, channels[0]), nn.ReLU(inplace=True)) self.level0 = self._make_conv_level( channels[0], channels[0], levels[0]) self.level1 = self._make_conv_level( channels[0], channels[1], levels[1], stride=2) self.level2 = Tree(levels[2], block, channels[1], channels[2], 2, level_root=False, root_residual=residual_root, norm=norm) self.level3 = Tree(levels[3], block, channels[2], channels[3], 2, level_root=True, root_residual=residual_root, norm=norm) self.level4 = Tree(levels[4], block, channels[3], channels[4], 2, level_root=True, root_residual=residual_root, norm=norm) self.level5 = Tree(levels[5], block, channels[4], channels[5], 2, level_root=True, root_residual=residual_root, norm=norm) self.load_pretrained_model( data='imagenet', name='dla{}'.format(num_layers), hash=HASH[num_layers]) def load_pretrained_model(self, data, name, hash): model_url = get_model_url(data, name, hash) model_weights = model_zoo.load_url(model_url) num_classes = len(model_weights[list(model_weights.keys())[-1]]) self.fc = nn.Conv2d( self.channels[-1], num_classes, kernel_size=1, stride=1, padding=0, bias=True) print('Loading pretrained') self.load_state_dict(model_weights, strict=False) def _make_conv_level(self, inplanes, planes, convs, stride=1, dilation=1): modules = [] for i in range(convs): modules.extend([ nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride if i == 0 else 1, padding=dilation, bias=False, dilation=dilation), get_norm(self.norm, planes), nn.ReLU(inplace=True)]) inplanes = planes return nn.Sequential(*modules) def forward(self, x): y = [] x = self.base_layer(x) for i in range(6): x = getattr(self, 'level{}'.format(i))(x) y.append(x) return y def fill_up_weights(up): w = up.weight.data f = math.ceil(w.size(2) / 2) c = (2 * f - 1 - f % 2) / (2. * f) for i in range(w.size(2)): for j in range(w.size(3)): w[0, 0, i, j] = \ (1 - math.fabs(i / f - c)) * (1 - math.fabs(j / f - c)) for c in range(1, w.size(0)): w[c, 0, :, :] = w[0, 0, :, :] class _DeformConv(nn.Module): def __init__(self, chi, cho, norm='BN'): super(_DeformConv, self).__init__() self.actf = nn.Sequential( get_norm(norm, cho), nn.ReLU(inplace=True) ) if DCNV1: self.offset = Conv2d( chi, 18, kernel_size=3, stride=1, padding=1, dilation=1) self.conv = DeformConv( chi, cho, kernel_size=(3,3), stride=1, padding=1, dilation=1, deformable_groups=1) else: self.offset = Conv2d( chi, 27, kernel_size=3, stride=1, padding=1, dilation=1) self.conv = ModulatedDeformConv( chi, cho, kernel_size=3, stride=1, padding=1, dilation=1, deformable_groups=1) nn.init.constant_(self.offset.weight, 0) nn.init.constant_(self.offset.bias, 0) def forward(self, x): if DCNV1: offset = self.offset(x) x = self.conv(x, offset) else: offset_mask = self.offset(x) offset_x, offset_y, mask = torch.chunk(offset_mask, 3, dim=1) offset = torch.cat((offset_x, offset_y), dim=1) mask = mask.sigmoid() x = self.conv(x, offset, mask) x = self.actf(x) return x class IDAUp(nn.Module): def __init__(self, o, channels, up_f, norm='BN'): super(IDAUp, self).__init__() for i in range(1, len(channels)): c = channels[i] f = int(up_f[i]) proj = _DeformConv(c, o, norm=norm) node = _DeformConv(o, o, norm=norm) up = nn.ConvTranspose2d(o, o, f * 2, stride=f, padding=f // 2, output_padding=0, groups=o, bias=False) fill_up_weights(up) setattr(self, 'proj_' + str(i), proj) setattr(self, 'up_' + str(i), up) setattr(self, 'node_' + str(i), node) def forward(self, layers, startp, endp): for i in range(startp + 1, endp): upsample = getattr(self, 'up_' + str(i - startp)) project = getattr(self, 'proj_' + str(i - startp)) layers[i] = upsample(project(layers[i])) node = getattr(self, 'node_' + str(i - startp)) layers[i] = node(layers[i] + layers[i - 1]) class DLAUp(nn.Module): def __init__(self, startp, channels, scales, in_channels=None, norm='BN'): super(DLAUp, self).__init__() self.startp = startp if in_channels is None: in_channels = channels self.channels = channels channels = list(channels) scales = np.array(scales, dtype=int) for i in range(len(channels) - 1): j = -i - 2 setattr(self, 'ida_{}'.format(i), IDAUp(channels[j], in_channels[j:], scales[j:] // scales[j], norm=norm)) scales[j + 1:] = scales[j] in_channels[j + 1:] = [channels[j] for _ in channels[j + 1:]] def forward(self, layers): out = [layers[-1]] # start with 32 for i in range(len(layers) - self.startp - 1): ida = getattr(self, 'ida_{}'.format(i)) ida(layers, len(layers) -i - 2, len(layers)) out.insert(0, layers[-1]) return out DLA_CONFIGS = { 34: ([1, 1, 1, 2, 2, 1], [16, 32, 64, 128, 256, 512], BasicBlock), 60: ([1, 1, 1, 2, 3, 1], [16, 32, 128, 256, 512, 1024], Bottleneck) } class DLASeg(Backbone): def __init__(self, num_layers, out_features, use_dla_up=True, ms_output=False, norm='BN'): super(DLASeg, self).__init__() # depth = 34 levels, channels, Block = DLA_CONFIGS[num_layers] self.base = DLA(num_layers=num_layers, levels=levels, channels=channels, block=Block, norm=norm) down_ratio = 4 self.first_level = int(np.log2(down_ratio)) self.ms_output = ms_output self.last_level = 5 if not self.ms_output else 6 channels = self.base.channels scales = [2 ** i for i in range(len(channels[self.first_level:]))] self.use_dla_up = use_dla_up if self.use_dla_up: self.dla_up = DLAUp( self.first_level, channels[self.first_level:], scales, norm=norm) out_channel = channels[self.first_level] if not self.ms_output: # stride 4 DLA self.ida_up = IDAUp( out_channel, channels[self.first_level:self.last_level], [2 ** i for i in range(self.last_level - self.first_level)], norm=norm) self._out_features = out_features self._out_feature_channels = { 'dla{}'.format(i): channels[i] for i in range(6)} self._out_feature_strides = { 'dla{}'.format(i): 2 ** i for i in range(6)} self._size_divisibility = 32 @property def size_divisibility(self): return self._size_divisibility def forward(self, x): x = self.base(x) if self.use_dla_up: x = self.dla_up(x) if not self.ms_output: # stride 4 dla y = [] for i in range(self.last_level - self.first_level): y.append(x[i].clone()) self.ida_up(y, 0, len(y)) ret = {} for i in range(self.last_level - self.first_level): out_feature = 'dla{}'.format(i) if out_feature in self._out_features: ret[out_feature] = y[i] else: ret = {} st = self.first_level if self.use_dla_up else 0 for i in range(self.last_level - st): out_feature = 'dla{}'.format(i + st) if out_feature in self._out_features: ret[out_feature] = x[i] return ret @BACKBONE_REGISTRY.register() def build_dla_backbone(cfg, input_shape): """ Create a ResNet instance from config. Returns: ResNet: a :class:`ResNet` instance. """ return DLASeg( out_features=cfg.MODEL.DLA.OUT_FEATURES, num_layers=cfg.MODEL.DLA.NUM_LAYERS, use_dla_up=cfg.MODEL.DLA.USE_DLA_UP, ms_output=cfg.MODEL.DLA.MS_OUTPUT, norm=cfg.MODEL.DLA.NORM) class LastLevelP6P7(nn.Module): """ This module is used in RetinaNet to generate extra layers, P6 and P7 from C5 feature. """ def __init__(self, in_channels, out_channels): super().__init__() self.num_levels = 2 self.in_feature = "dla5" self.p6 = nn.Conv2d(in_channels, out_channels, 3, 2, 1) self.p7 = nn.Conv2d(out_channels, out_channels, 3, 2, 1) for module in [self.p6, self.p7]: weight_init.c2_xavier_fill(module) def forward(self, c5): p6 = self.p6(c5) p7 = self.p7(F.relu(p6)) return [p6, p7] @BACKBONE_REGISTRY.register() def build_retinanet_dla_fpn_backbone(cfg, input_shape: ShapeSpec): """ Args: cfg: a detectron2 CfgNode Returns: backbone (Backbone): backbone module, must be a subclass of :class:`Backbone`. """ bottom_up = build_dla_backbone(cfg, input_shape) in_features = cfg.MODEL.FPN.IN_FEATURES out_channels = cfg.MODEL.FPN.OUT_CHANNELS in_channels_p6p7 = bottom_up.output_shape()['dla5'].channels backbone = FPN( bottom_up=bottom_up, in_features=in_features, out_channels=out_channels, norm=cfg.MODEL.FPN.NORM, top_block=LastLevelP6P7(in_channels_p6p7, out_channels), fuse_type=cfg.MODEL.FPN.FUSE_TYPE, ) return backbone