# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # This file is modified from https://github.com/Res2Net/Res2Net-detectron2/blob/master/detectron2/modeling/backbone/resnet.py # The original file is under Apache-2.0 License import numpy as np import fvcore.nn.weight_init as weight_init import torch import torch.nn.functional as F from torch import nn from detectron2.layers import ( CNNBlockBase, Conv2d, DeformConv, ModulatedDeformConv, ShapeSpec, get_norm, ) from detectron2.modeling.backbone import Backbone from detectron2.modeling.backbone.fpn import FPN from detectron2.modeling.backbone.build import BACKBONE_REGISTRY from .fpn_p5 import LastLevelP6P7_P5 from .bifpn import BiFPN __all__ = [ "ResNetBlockBase", "BasicBlock", "BottleneckBlock", "DeformBottleneckBlock", "BasicStem", "ResNet", "make_stage", "build_res2net_backbone", ] ResNetBlockBase = CNNBlockBase """ Alias for backward compatibiltiy. """ class BasicBlock(CNNBlockBase): """ The basic residual block for ResNet-18 and ResNet-34, with two 3x3 conv layers and a projection shortcut if needed. """ def __init__(self, in_channels, out_channels, *, stride=1, norm="BN"): """ Args: in_channels (int): Number of input channels. out_channels (int): Number of output channels. stride (int): Stride for the first conv. norm (str or callable): normalization for all conv layers. See :func:`layers.get_norm` for supported format. """ super().__init__(in_channels, out_channels, stride) if in_channels != out_channels: self.shortcut = Conv2d( in_channels, out_channels, kernel_size=1, stride=stride, bias=False, norm=get_norm(norm, out_channels), ) else: self.shortcut = None self.conv1 = Conv2d( in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False, norm=get_norm(norm, out_channels), ) self.conv2 = Conv2d( out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False, norm=get_norm(norm, out_channels), ) for layer in [self.conv1, self.conv2, self.shortcut]: if layer is not None: # shortcut can be None weight_init.c2_msra_fill(layer) def forward(self, x): out = self.conv1(x) out = F.relu_(out) out = self.conv2(out) if self.shortcut is not None: shortcut = self.shortcut(x) else: shortcut = x out += shortcut out = F.relu_(out) return out class BottleneckBlock(CNNBlockBase): """ The standard bottle2neck residual block used by Res2Net-50, 101 and 152. """ def __init__( self, in_channels, out_channels, *, bottleneck_channels, stride=1, num_groups=1, norm="BN", stride_in_1x1=False, dilation=1, basewidth=26, scale=4, ): """ Args: bottleneck_channels (int): number of output channels for the 3x3 "bottleneck" conv layers. num_groups (int): number of groups for the 3x3 conv layer. norm (str or callable): normalization for all conv layers. See :func:`layers.get_norm` for supported format. stride_in_1x1 (bool): when stride>1, whether to put stride in the first 1x1 convolution or the bottleneck 3x3 convolution. dilation (int): the dilation rate of the 3x3 conv layer. """ super().__init__(in_channels, out_channels, stride) if in_channels != out_channels: self.shortcut = nn.Sequential( nn.AvgPool2d(kernel_size=stride, stride=stride, ceil_mode=True, count_include_pad=False), Conv2d( in_channels, out_channels, kernel_size=1, stride=1, bias=False, norm=get_norm(norm, out_channels), ) ) else: self.shortcut = None # The original MSRA ResNet models have stride in the first 1x1 conv # The subsequent fb.torch.resnet and Caffe2 ResNe[X]t implementations have # stride in the 3x3 conv stride_1x1, stride_3x3 = (stride, 1) if stride_in_1x1 else (1, stride) width = bottleneck_channels//scale self.conv1 = Conv2d( in_channels, bottleneck_channels, kernel_size=1, stride=stride_1x1, bias=False, norm=get_norm(norm, bottleneck_channels), ) if scale == 1: self.nums = 1 else: self.nums = scale -1 if self.in_channels!=self.out_channels and stride_3x3!=2: self.pool = nn.AvgPool2d(kernel_size=3, stride = stride_3x3, padding=1) convs = [] bns = [] for i in range(self.nums): convs.append(nn.Conv2d( width, width, kernel_size=3, stride=stride_3x3, padding=1 * dilation, bias=False, groups=num_groups, dilation=dilation, )) bns.append(get_norm(norm, width)) self.convs = nn.ModuleList(convs) self.bns = nn.ModuleList(bns) self.conv3 = Conv2d( bottleneck_channels, out_channels, kernel_size=1, bias=False, norm=get_norm(norm, out_channels), ) self.scale = scale self.width = width self.in_channels = in_channels self.out_channels = out_channels self.stride_3x3 = stride_3x3 for layer in [self.conv1, self.conv3]: if layer is not None: # shortcut can be None weight_init.c2_msra_fill(layer) if self.shortcut is not None: for layer in self.shortcut.modules(): if isinstance(layer, Conv2d): weight_init.c2_msra_fill(layer) for layer in self.convs: if layer is not None: # shortcut can be None weight_init.c2_msra_fill(layer) # Zero-initialize the last normalization in each residual branch, # so that at the beginning, the residual branch starts with zeros, # and each residual block behaves like an identity. # See Sec 5.1 in "Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour": # "For BN layers, the learnable scaling coefficient γ is initialized # to be 1, except for each residual block's last BN # where γ is initialized to be 0." # nn.init.constant_(self.conv3.norm.weight, 0) # TODO this somehow hurts performance when training GN models from scratch. # Add it as an option when we need to use this code to train a backbone. def forward(self, x): out = self.conv1(x) out = F.relu_(out) spx = torch.split(out, self.width, 1) for i in range(self.nums): if i==0 or self.in_channels!=self.out_channels: sp = spx[i] else: sp = sp + spx[i] sp = self.convs[i](sp) sp = F.relu_(self.bns[i](sp)) if i==0: out = sp else: out = torch.cat((out, sp), 1) if self.scale!=1 and self.stride_3x3==1: out = torch.cat((out, spx[self.nums]), 1) elif self.scale != 1 and self.stride_3x3==2: out = torch.cat((out, self.pool(spx[self.nums])), 1) out = self.conv3(out) if self.shortcut is not None: shortcut = self.shortcut(x) else: shortcut = x out += shortcut out = F.relu_(out) return out class DeformBottleneckBlock(ResNetBlockBase): """ Not implemented for res2net yet. Similar to :class:`BottleneckBlock`, but with deformable conv in the 3x3 convolution. """ def __init__( self, in_channels, out_channels, *, bottleneck_channels, stride=1, num_groups=1, norm="BN", stride_in_1x1=False, dilation=1, deform_modulated=False, deform_num_groups=1, basewidth=26, scale=4, ): super().__init__(in_channels, out_channels, stride) self.deform_modulated = deform_modulated if in_channels != out_channels: # self.shortcut = Conv2d( # in_channels, # out_channels, # kernel_size=1, # stride=stride, # bias=False, # norm=get_norm(norm, out_channels), # ) self.shortcut = nn.Sequential( nn.AvgPool2d(kernel_size=stride, stride=stride, ceil_mode=True, count_include_pad=False), Conv2d( in_channels, out_channels, kernel_size=1, stride=1, bias=False, norm=get_norm(norm, out_channels), ) ) else: self.shortcut = None stride_1x1, stride_3x3 = (stride, 1) if stride_in_1x1 else (1, stride) width = bottleneck_channels//scale self.conv1 = Conv2d( in_channels, bottleneck_channels, kernel_size=1, stride=stride_1x1, bias=False, norm=get_norm(norm, bottleneck_channels), ) if scale == 1: self.nums = 1 else: self.nums = scale -1 if self.in_channels!=self.out_channels and stride_3x3!=2: self.pool = nn.AvgPool2d(kernel_size=3, stride = stride_3x3, padding=1) if deform_modulated: deform_conv_op = ModulatedDeformConv # offset channels are 2 or 3 (if with modulated) * kernel_size * kernel_size offset_channels = 27 else: deform_conv_op = DeformConv offset_channels = 18 # self.conv2_offset = Conv2d( # bottleneck_channels, # offset_channels * deform_num_groups, # kernel_size=3, # stride=stride_3x3, # padding=1 * dilation, # dilation=dilation, # ) # self.conv2 = deform_conv_op( # bottleneck_channels, # bottleneck_channels, # kernel_size=3, # stride=stride_3x3, # padding=1 * dilation, # bias=False, # groups=num_groups, # dilation=dilation, # deformable_groups=deform_num_groups, # norm=get_norm(norm, bottleneck_channels), # ) conv2_offsets = [] convs = [] bns = [] for i in range(self.nums): conv2_offsets.append(Conv2d( width, offset_channels * deform_num_groups, kernel_size=3, stride=stride_3x3, padding=1 * dilation, bias=False, groups=num_groups, dilation=dilation, )) convs.append(deform_conv_op( width, width, kernel_size=3, stride=stride_3x3, padding=1 * dilation, bias=False, groups=num_groups, dilation=dilation, deformable_groups=deform_num_groups, )) bns.append(get_norm(norm, width)) self.conv2_offsets = nn.ModuleList(conv2_offsets) self.convs = nn.ModuleList(convs) self.bns = nn.ModuleList(bns) self.conv3 = Conv2d( bottleneck_channels, out_channels, kernel_size=1, bias=False, norm=get_norm(norm, out_channels), ) self.scale = scale self.width = width self.in_channels = in_channels self.out_channels = out_channels self.stride_3x3 = stride_3x3 # for layer in [self.conv1, self.conv2, self.conv3, self.shortcut]: # if layer is not None: # shortcut can be None # weight_init.c2_msra_fill(layer) # nn.init.constant_(self.conv2_offset.weight, 0) # nn.init.constant_(self.conv2_offset.bias, 0) for layer in [self.conv1, self.conv3]: if layer is not None: # shortcut can be None weight_init.c2_msra_fill(layer) if self.shortcut is not None: for layer in self.shortcut.modules(): if isinstance(layer, Conv2d): weight_init.c2_msra_fill(layer) for layer in self.convs: if layer is not None: # shortcut can be None weight_init.c2_msra_fill(layer) for layer in self.conv2_offsets: if layer.weight is not None: nn.init.constant_(layer.weight, 0) if layer.bias is not None: nn.init.constant_(layer.bias, 0) def forward(self, x): out = self.conv1(x) out = F.relu_(out) # if self.deform_modulated: # offset_mask = self.conv2_offset(out) # offset_x, offset_y, mask = torch.chunk(offset_mask, 3, dim=1) # offset = torch.cat((offset_x, offset_y), dim=1) # mask = mask.sigmoid() # out = self.conv2(out, offset, mask) # else: # offset = self.conv2_offset(out) # out = self.conv2(out, offset) # out = F.relu_(out) spx = torch.split(out, self.width, 1) for i in range(self.nums): if i==0 or self.in_channels!=self.out_channels: sp = spx[i].contiguous() else: sp = sp + spx[i].contiguous() # sp = self.convs[i](sp) if self.deform_modulated: offset_mask = self.conv2_offsets[i](sp) offset_x, offset_y, mask = torch.chunk(offset_mask, 3, dim=1) offset = torch.cat((offset_x, offset_y), dim=1) mask = mask.sigmoid() sp = self.convs[i](sp, offset, mask) else: offset = self.conv2_offsets[i](sp) sp = self.convs[i](sp, offset) sp = F.relu_(self.bns[i](sp)) if i==0: out = sp else: out = torch.cat((out, sp), 1) if self.scale!=1 and self.stride_3x3==1: out = torch.cat((out, spx[self.nums]), 1) elif self.scale != 1 and self.stride_3x3==2: out = torch.cat((out, self.pool(spx[self.nums])), 1) out = self.conv3(out) if self.shortcut is not None: shortcut = self.shortcut(x) else: shortcut = x out += shortcut out = F.relu_(out) return out def make_stage(block_class, num_blocks, first_stride, *, in_channels, out_channels, **kwargs): """ Create a list of blocks just like those in a ResNet stage. Args: block_class (type): a subclass of ResNetBlockBase num_blocks (int): first_stride (int): the stride of the first block. The other blocks will have stride=1. in_channels (int): input channels of the entire stage. out_channels (int): output channels of **every block** in the stage. kwargs: other arguments passed to the constructor of every block. Returns: list[nn.Module]: a list of block module. """ assert "stride" not in kwargs, "Stride of blocks in make_stage cannot be changed." blocks = [] for i in range(num_blocks): blocks.append( block_class( in_channels=in_channels, out_channels=out_channels, stride=first_stride if i == 0 else 1, **kwargs, ) ) in_channels = out_channels return blocks class BasicStem(CNNBlockBase): """ The standard ResNet stem (layers before the first residual block). """ def __init__(self, in_channels=3, out_channels=64, norm="BN"): """ Args: norm (str or callable): norm after the first conv layer. See :func:`layers.get_norm` for supported format. """ super().__init__(in_channels, out_channels, 4) self.in_channels = in_channels self.conv1 = nn.Sequential( Conv2d( in_channels, 32, kernel_size=3, stride=2, padding=1, bias=False, ), get_norm(norm, 32), nn.ReLU(inplace=True), Conv2d( 32, 32, kernel_size=3, stride=1, padding=1, bias=False, ), get_norm(norm, 32), nn.ReLU(inplace=True), Conv2d( 32, out_channels, kernel_size=3, stride=1, padding=1, bias=False, ), ) self.bn1 = get_norm(norm, out_channels) for layer in self.conv1: if isinstance(layer, Conv2d): weight_init.c2_msra_fill(layer) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = F.relu_(x) x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1) return x class ResNet(Backbone): def __init__(self, stem, stages, num_classes=None, out_features=None): """ Args: stem (nn.Module): a stem module stages (list[list[CNNBlockBase]]): several (typically 4) stages, each contains multiple :class:`CNNBlockBase`. num_classes (None or int): if None, will not perform classification. Otherwise, will create a linear layer. out_features (list[str]): name of the layers whose outputs should be returned in forward. Can be anything in "stem", "linear", or "res2" ... If None, will return the output of the last layer. """ super(ResNet, self).__init__() self.stem = stem self.num_classes = num_classes current_stride = self.stem.stride self._out_feature_strides = {"stem": current_stride} self._out_feature_channels = {"stem": self.stem.out_channels} self.stages_and_names = [] for i, blocks in enumerate(stages): assert len(blocks) > 0, len(blocks) for block in blocks: assert isinstance(block, CNNBlockBase), block name = "res" + str(i + 2) stage = nn.Sequential(*blocks) self.add_module(name, stage) self.stages_and_names.append((stage, name)) self._out_feature_strides[name] = current_stride = int( current_stride * np.prod([k.stride for k in blocks]) ) self._out_feature_channels[name] = curr_channels = blocks[-1].out_channels if num_classes is not None: self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.linear = nn.Linear(curr_channels, num_classes) # Sec 5.1 in "Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour": # "The 1000-way fully-connected layer is initialized by # drawing weights from a zero-mean Gaussian with standard deviation of 0.01." nn.init.normal_(self.linear.weight, std=0.01) name = "linear" if out_features is None: out_features = [name] self._out_features = out_features assert len(self._out_features) children = [x[0] for x in self.named_children()] for out_feature in self._out_features: assert out_feature in children, "Available children: {}".format(", ".join(children)) def forward(self, x): outputs = {} x = self.stem(x) if "stem" in self._out_features: outputs["stem"] = x for stage, name in self.stages_and_names: x = stage(x) if name in self._out_features: outputs[name] = x if self.num_classes is not None: x = self.avgpool(x) x = torch.flatten(x, 1) x = self.linear(x) if "linear" in self._out_features: outputs["linear"] = x return outputs def output_shape(self): return { name: ShapeSpec( channels=self._out_feature_channels[name], stride=self._out_feature_strides[name] ) for name in self._out_features } def freeze(self, freeze_at=0): """ Freeze the first several stages of the ResNet. Commonly used in fine-tuning. Args: freeze_at (int): number of stem and stages to freeze. `1` means freezing the stem. `2` means freezing the stem and the first stage, etc. Returns: nn.Module: this ResNet itself """ if freeze_at >= 1: self.stem.freeze() for idx, (stage, _) in enumerate(self.stages_and_names, start=2): if freeze_at >= idx: for block in stage.children(): block.freeze() return self @BACKBONE_REGISTRY.register() def build_res2net_backbone(cfg, input_shape): """ Create a Res2Net instance from config. Returns: ResNet: a :class:`ResNet` instance. """ # need registration of new blocks/stems? norm = cfg.MODEL.RESNETS.NORM stem = BasicStem( in_channels=input_shape.channels, out_channels=cfg.MODEL.RESNETS.STEM_OUT_CHANNELS, norm=norm, ) # fmt: off freeze_at = cfg.MODEL.BACKBONE.FREEZE_AT out_features = cfg.MODEL.RESNETS.OUT_FEATURES depth = cfg.MODEL.RESNETS.DEPTH num_groups = cfg.MODEL.RESNETS.NUM_GROUPS width_per_group = cfg.MODEL.RESNETS.WIDTH_PER_GROUP scale = 4 bottleneck_channels = num_groups * width_per_group * scale in_channels = cfg.MODEL.RESNETS.STEM_OUT_CHANNELS out_channels = cfg.MODEL.RESNETS.RES2_OUT_CHANNELS stride_in_1x1 = cfg.MODEL.RESNETS.STRIDE_IN_1X1 res5_dilation = cfg.MODEL.RESNETS.RES5_DILATION deform_on_per_stage = cfg.MODEL.RESNETS.DEFORM_ON_PER_STAGE deform_modulated = cfg.MODEL.RESNETS.DEFORM_MODULATED deform_num_groups = cfg.MODEL.RESNETS.DEFORM_NUM_GROUPS # fmt: on assert res5_dilation in {1, 2}, "res5_dilation cannot be {}.".format(res5_dilation) num_blocks_per_stage = { 18: [2, 2, 2, 2], 34: [3, 4, 6, 3], 50: [3, 4, 6, 3], 101: [3, 4, 23, 3], 152: [3, 8, 36, 3], }[depth] if depth in [18, 34]: assert out_channels == 64, "Must set MODEL.RESNETS.RES2_OUT_CHANNELS = 64 for R18/R34" assert not any( deform_on_per_stage ), "MODEL.RESNETS.DEFORM_ON_PER_STAGE unsupported for R18/R34" assert res5_dilation == 1, "Must set MODEL.RESNETS.RES5_DILATION = 1 for R18/R34" assert num_groups == 1, "Must set MODEL.RESNETS.NUM_GROUPS = 1 for R18/R34" stages = [] # Avoid creating variables without gradients # It consumes extra memory and may cause allreduce to fail out_stage_idx = [{"res2": 2, "res3": 3, "res4": 4, "res5": 5}[f] for f in out_features] max_stage_idx = max(out_stage_idx) for idx, stage_idx in enumerate(range(2, max_stage_idx + 1)): dilation = res5_dilation if stage_idx == 5 else 1 first_stride = 1 if idx == 0 or (stage_idx == 5 and dilation == 2) else 2 stage_kargs = { "num_blocks": num_blocks_per_stage[idx], "first_stride": first_stride, "in_channels": in_channels, "out_channels": out_channels, "norm": norm, } # Use BasicBlock for R18 and R34. if depth in [18, 34]: stage_kargs["block_class"] = BasicBlock else: stage_kargs["bottleneck_channels"] = bottleneck_channels stage_kargs["stride_in_1x1"] = stride_in_1x1 stage_kargs["dilation"] = dilation stage_kargs["num_groups"] = num_groups stage_kargs["scale"] = scale if deform_on_per_stage[idx]: stage_kargs["block_class"] = DeformBottleneckBlock stage_kargs["deform_modulated"] = deform_modulated stage_kargs["deform_num_groups"] = deform_num_groups else: stage_kargs["block_class"] = BottleneckBlock blocks = make_stage(**stage_kargs) in_channels = out_channels out_channels *= 2 bottleneck_channels *= 2 stages.append(blocks) return ResNet(stem, stages, out_features=out_features).freeze(freeze_at) @BACKBONE_REGISTRY.register() def build_p67_res2net_fpn_backbone(cfg, input_shape: ShapeSpec): """ Args: cfg: a detectron2 CfgNode Returns: backbone (Backbone): backbone module, must be a subclass of :class:`Backbone`. """ bottom_up = build_res2net_backbone(cfg, input_shape) in_features = cfg.MODEL.FPN.IN_FEATURES out_channels = cfg.MODEL.FPN.OUT_CHANNELS backbone = FPN( bottom_up=bottom_up, in_features=in_features, out_channels=out_channels, norm=cfg.MODEL.FPN.NORM, top_block=LastLevelP6P7_P5(out_channels, out_channels), fuse_type=cfg.MODEL.FPN.FUSE_TYPE, ) return backbone @BACKBONE_REGISTRY.register() def build_res2net_bifpn_backbone(cfg, input_shape: ShapeSpec): """ Args: cfg: a detectron2 CfgNode Returns: backbone (Backbone): backbone module, must be a subclass of :class:`Backbone`. """ bottom_up = build_res2net_backbone(cfg, input_shape) in_features = cfg.MODEL.FPN.IN_FEATURES backbone = BiFPN( cfg=cfg, bottom_up=bottom_up, in_features=in_features, out_channels=cfg.MODEL.BIFPN.OUT_CHANNELS, norm=cfg.MODEL.BIFPN.NORM, num_levels=cfg.MODEL.BIFPN.NUM_LEVELS, num_bifpn=cfg.MODEL.BIFPN.NUM_BIFPN, separable_conv=cfg.MODEL.BIFPN.SEPARABLE_CONV, ) return backbone