Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	use taesd for all models
Browse files- pipelines/controlnet.py +11 -6
 - pipelines/controlnetLoraSD15.py +16 -6
 - pipelines/controlnetLoraSDXL.py +16 -5
 - pipelines/controlnetSDXLTurbo.py +10 -4
 - pipelines/img2img.py +13 -6
 - pipelines/img2imgSDXLTurbo.py +2 -2
 - pipelines/txt2img.py +3 -3
 - pipelines/txt2imgLora.py +1 -1
 - pipelines/txt2imgLoraSDXL.py +7 -7
 
    	
        pipelines/controlnet.py
    CHANGED
    
    | 
         @@ -16,6 +16,7 @@ import psutil 
     | 
|
| 16 | 
         
             
            from config import Args
         
     | 
| 17 | 
         
             
            from pydantic import BaseModel, Field
         
     | 
| 18 | 
         
             
            from PIL import Image
         
     | 
| 
         | 
|
| 19 | 
         | 
| 20 | 
         
             
            base_model = "SimianLuo/LCM_Dreamshaper_v7"
         
     | 
| 21 | 
         
             
            taesd_model = "madebyollin/taesd"
         
     | 
| 
         @@ -68,13 +69,13 @@ class Pipeline: 
     | 
|
| 68 | 
         
             
                        2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
         
     | 
| 69 | 
         
             
                    )
         
     | 
| 70 | 
         
             
                    steps: int = Field(
         
     | 
| 71 | 
         
            -
                        4, min= 
     | 
| 72 | 
         
             
                    )
         
     | 
| 73 | 
         
             
                    width: int = Field(
         
     | 
| 74 | 
         
            -
                         
     | 
| 75 | 
         
             
                    )
         
     | 
| 76 | 
         
             
                    height: int = Field(
         
     | 
| 77 | 
         
            -
                         
     | 
| 78 | 
         
             
                    )
         
     | 
| 79 | 
         
             
                    guidance_scale: float = Field(
         
     | 
| 80 | 
         
             
                        0.2,
         
     | 
| 
         @@ -171,7 +172,7 @@ class Pipeline: 
     | 
|
| 171 | 
         
             
                    if args.use_taesd:
         
     | 
| 172 | 
         
             
                        self.pipe.vae = AutoencoderTiny.from_pretrained(
         
     | 
| 173 | 
         
             
                            taesd_model, torch_dtype=torch_dtype, use_safetensors=True
         
     | 
| 174 | 
         
            -
                        )
         
     | 
| 175 | 
         
             
                    self.canny_torch = SobelOperator(device=device)
         
     | 
| 176 | 
         
             
                    self.pipe.set_progress_bar_config(disable=True)
         
     | 
| 177 | 
         
             
                    self.pipe.to(device=device, dtype=torch_dtype)
         
     | 
| 
         @@ -208,14 +209,18 @@ class Pipeline: 
     | 
|
| 208 | 
         
             
                    control_image = self.canny_torch(
         
     | 
| 209 | 
         
             
                        params.image, params.canny_low_threshold, params.canny_high_threshold
         
     | 
| 210 | 
         
             
                    )
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 211 | 
         | 
| 212 | 
         
             
                    results = self.pipe(
         
     | 
| 213 | 
         
             
                        image=params.image,
         
     | 
| 214 | 
         
             
                        control_image=control_image,
         
     | 
| 215 | 
         
             
                        prompt_embeds=prompt_embeds,
         
     | 
| 216 | 
         
             
                        generator=generator,
         
     | 
| 217 | 
         
            -
                        strength= 
     | 
| 218 | 
         
            -
                        num_inference_steps= 
     | 
| 219 | 
         
             
                        guidance_scale=params.guidance_scale,
         
     | 
| 220 | 
         
             
                        width=params.width,
         
     | 
| 221 | 
         
             
                        height=params.height,
         
     | 
| 
         | 
|
| 16 | 
         
             
            from config import Args
         
     | 
| 17 | 
         
             
            from pydantic import BaseModel, Field
         
     | 
| 18 | 
         
             
            from PIL import Image
         
     | 
| 19 | 
         
            +
            import math
         
     | 
| 20 | 
         | 
| 21 | 
         
             
            base_model = "SimianLuo/LCM_Dreamshaper_v7"
         
     | 
| 22 | 
         
             
            taesd_model = "madebyollin/taesd"
         
     | 
| 
         | 
|
| 69 | 
         
             
                        2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
         
     | 
| 70 | 
         
             
                    )
         
     | 
| 71 | 
         
             
                    steps: int = Field(
         
     | 
| 72 | 
         
            +
                        4, min=1, max=15, title="Steps", field="range", hide=True, id="steps"
         
     | 
| 73 | 
         
             
                    )
         
     | 
| 74 | 
         
             
                    width: int = Field(
         
     | 
| 75 | 
         
            +
                        768, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
         
     | 
| 76 | 
         
             
                    )
         
     | 
| 77 | 
         
             
                    height: int = Field(
         
     | 
| 78 | 
         
            +
                        768, min=2, max=15, title="Height", disabled=True, hide=True, id="height"
         
     | 
| 79 | 
         
             
                    )
         
     | 
| 80 | 
         
             
                    guidance_scale: float = Field(
         
     | 
| 81 | 
         
             
                        0.2,
         
     | 
| 
         | 
|
| 172 | 
         
             
                    if args.use_taesd:
         
     | 
| 173 | 
         
             
                        self.pipe.vae = AutoencoderTiny.from_pretrained(
         
     | 
| 174 | 
         
             
                            taesd_model, torch_dtype=torch_dtype, use_safetensors=True
         
     | 
| 175 | 
         
            +
                        ).to(device)
         
     | 
| 176 | 
         
             
                    self.canny_torch = SobelOperator(device=device)
         
     | 
| 177 | 
         
             
                    self.pipe.set_progress_bar_config(disable=True)
         
     | 
| 178 | 
         
             
                    self.pipe.to(device=device, dtype=torch_dtype)
         
     | 
| 
         | 
|
| 209 | 
         
             
                    control_image = self.canny_torch(
         
     | 
| 210 | 
         
             
                        params.image, params.canny_low_threshold, params.canny_high_threshold
         
     | 
| 211 | 
         
             
                    )
         
     | 
| 212 | 
         
            +
                    steps = params.steps
         
     | 
| 213 | 
         
            +
                    strength = params.strength
         
     | 
| 214 | 
         
            +
                    if int(steps * strength) < 1:
         
     | 
| 215 | 
         
            +
                        steps = math.ceil(1 / max(0.10, strength))
         
     | 
| 216 | 
         | 
| 217 | 
         
             
                    results = self.pipe(
         
     | 
| 218 | 
         
             
                        image=params.image,
         
     | 
| 219 | 
         
             
                        control_image=control_image,
         
     | 
| 220 | 
         
             
                        prompt_embeds=prompt_embeds,
         
     | 
| 221 | 
         
             
                        generator=generator,
         
     | 
| 222 | 
         
            +
                        strength=strength,
         
     | 
| 223 | 
         
            +
                        num_inference_steps=steps,
         
     | 
| 224 | 
         
             
                        guidance_scale=params.guidance_scale,
         
     | 
| 225 | 
         
             
                        width=params.width,
         
     | 
| 226 | 
         
             
                        height=params.height,
         
     | 
    	
        pipelines/controlnetLoraSD15.py
    CHANGED
    
    | 
         @@ -2,6 +2,7 @@ from diffusers import ( 
     | 
|
| 2 | 
         
             
                StableDiffusionControlNetImg2ImgPipeline,
         
     | 
| 3 | 
         
             
                ControlNetModel,
         
     | 
| 4 | 
         
             
                LCMScheduler,
         
     | 
| 
         | 
|
| 5 | 
         
             
            )
         
     | 
| 6 | 
         
             
            from compel import Compel
         
     | 
| 7 | 
         
             
            import torch
         
     | 
| 
         @@ -16,6 +17,7 @@ import psutil 
     | 
|
| 16 | 
         
             
            from config import Args
         
     | 
| 17 | 
         
             
            from pydantic import BaseModel, Field
         
     | 
| 18 | 
         
             
            from PIL import Image
         
     | 
| 
         | 
|
| 19 | 
         | 
| 20 | 
         
             
            taesd_model = "madebyollin/taesd"
         
     | 
| 21 | 
         
             
            controlnet_model = "lllyasviel/control_v11p_sd15_canny"
         
     | 
| 
         @@ -79,13 +81,13 @@ class Pipeline: 
     | 
|
| 79 | 
         
             
                        2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
         
     | 
| 80 | 
         
             
                    )
         
     | 
| 81 | 
         
             
                    steps: int = Field(
         
     | 
| 82 | 
         
            -
                        4, min= 
     | 
| 83 | 
         
             
                    )
         
     | 
| 84 | 
         
             
                    width: int = Field(
         
     | 
| 85 | 
         
            -
                         
     | 
| 86 | 
         
             
                    )
         
     | 
| 87 | 
         
             
                    height: int = Field(
         
     | 
| 88 | 
         
            -
                         
     | 
| 89 | 
         
             
                    )
         
     | 
| 90 | 
         
             
                    guidance_scale: float = Field(
         
     | 
| 91 | 
         
             
                        0.2,
         
     | 
| 
         @@ -200,6 +202,11 @@ class Pipeline: 
     | 
|
| 200 | 
         
             
                        if psutil.virtual_memory().total < 64 * 1024**3:
         
     | 
| 201 | 
         
             
                            pipe.enable_attention_slicing()
         
     | 
| 202 | 
         | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 203 | 
         
             
                        # Load LCM LoRA
         
     | 
| 204 | 
         
             
                        pipe.load_lora_weights(lcm_lora_id, adapter_name="lcm")
         
     | 
| 205 | 
         
             
                        pipe.compel_proc = Compel(
         
     | 
| 
         @@ -222,7 +229,6 @@ class Pipeline: 
     | 
|
| 222 | 
         | 
| 223 | 
         
             
                def predict(self, params: "Pipeline.InputParams") -> Image.Image:
         
     | 
| 224 | 
         
             
                    generator = torch.manual_seed(params.seed)
         
     | 
| 225 | 
         
            -
                    print(f"Using model: {params.base_model_id}")
         
     | 
| 226 | 
         
             
                    pipe = self.pipes[params.base_model_id]
         
     | 
| 227 | 
         | 
| 228 | 
         
             
                    activation_token = base_models[params.base_model_id]
         
     | 
| 
         @@ -231,14 +237,18 @@ class Pipeline: 
     | 
|
| 231 | 
         
             
                    control_image = self.canny_torch(
         
     | 
| 232 | 
         
             
                        params.image, params.canny_low_threshold, params.canny_high_threshold
         
     | 
| 233 | 
         
             
                    )
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 234 | 
         | 
| 235 | 
         
             
                    results = pipe(
         
     | 
| 236 | 
         
             
                        image=params.image,
         
     | 
| 237 | 
         
             
                        control_image=control_image,
         
     | 
| 238 | 
         
             
                        prompt_embeds=prompt_embeds,
         
     | 
| 239 | 
         
             
                        generator=generator,
         
     | 
| 240 | 
         
            -
                        strength= 
     | 
| 241 | 
         
            -
                        num_inference_steps= 
     | 
| 242 | 
         
             
                        guidance_scale=params.guidance_scale,
         
     | 
| 243 | 
         
             
                        width=params.width,
         
     | 
| 244 | 
         
             
                        height=params.height,
         
     | 
| 
         | 
|
| 2 | 
         
             
                StableDiffusionControlNetImg2ImgPipeline,
         
     | 
| 3 | 
         
             
                ControlNetModel,
         
     | 
| 4 | 
         
             
                LCMScheduler,
         
     | 
| 5 | 
         
            +
                AutoencoderTiny,
         
     | 
| 6 | 
         
             
            )
         
     | 
| 7 | 
         
             
            from compel import Compel
         
     | 
| 8 | 
         
             
            import torch
         
     | 
| 
         | 
|
| 17 | 
         
             
            from config import Args
         
     | 
| 18 | 
         
             
            from pydantic import BaseModel, Field
         
     | 
| 19 | 
         
             
            from PIL import Image
         
     | 
| 20 | 
         
            +
            import math
         
     | 
| 21 | 
         | 
| 22 | 
         
             
            taesd_model = "madebyollin/taesd"
         
     | 
| 23 | 
         
             
            controlnet_model = "lllyasviel/control_v11p_sd15_canny"
         
     | 
| 
         | 
|
| 81 | 
         
             
                        2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
         
     | 
| 82 | 
         
             
                    )
         
     | 
| 83 | 
         
             
                    steps: int = Field(
         
     | 
| 84 | 
         
            +
                        4, min=1, max=15, title="Steps", field="range", hide=True, id="steps"
         
     | 
| 85 | 
         
             
                    )
         
     | 
| 86 | 
         
             
                    width: int = Field(
         
     | 
| 87 | 
         
            +
                        768, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
         
     | 
| 88 | 
         
             
                    )
         
     | 
| 89 | 
         
             
                    height: int = Field(
         
     | 
| 90 | 
         
            +
                        768, min=2, max=15, title="Height", disabled=True, hide=True, id="height"
         
     | 
| 91 | 
         
             
                    )
         
     | 
| 92 | 
         
             
                    guidance_scale: float = Field(
         
     | 
| 93 | 
         
             
                        0.2,
         
     | 
| 
         | 
|
| 202 | 
         
             
                        if psutil.virtual_memory().total < 64 * 1024**3:
         
     | 
| 203 | 
         
             
                            pipe.enable_attention_slicing()
         
     | 
| 204 | 
         | 
| 205 | 
         
            +
                        if args.use_taesd:
         
     | 
| 206 | 
         
            +
                            pipe.vae = AutoencoderTiny.from_pretrained(
         
     | 
| 207 | 
         
            +
                                taesd_model, torch_dtype=torch_dtype, use_safetensors=True
         
     | 
| 208 | 
         
            +
                            ).to(device)
         
     | 
| 209 | 
         
            +
             
     | 
| 210 | 
         
             
                        # Load LCM LoRA
         
     | 
| 211 | 
         
             
                        pipe.load_lora_weights(lcm_lora_id, adapter_name="lcm")
         
     | 
| 212 | 
         
             
                        pipe.compel_proc = Compel(
         
     | 
| 
         | 
|
| 229 | 
         | 
| 230 | 
         
             
                def predict(self, params: "Pipeline.InputParams") -> Image.Image:
         
     | 
| 231 | 
         
             
                    generator = torch.manual_seed(params.seed)
         
     | 
| 
         | 
|
| 232 | 
         
             
                    pipe = self.pipes[params.base_model_id]
         
     | 
| 233 | 
         | 
| 234 | 
         
             
                    activation_token = base_models[params.base_model_id]
         
     | 
| 
         | 
|
| 237 | 
         
             
                    control_image = self.canny_torch(
         
     | 
| 238 | 
         
             
                        params.image, params.canny_low_threshold, params.canny_high_threshold
         
     | 
| 239 | 
         
             
                    )
         
     | 
| 240 | 
         
            +
                    steps = params.steps
         
     | 
| 241 | 
         
            +
                    strength = params.strength
         
     | 
| 242 | 
         
            +
                    if int(steps * strength) < 1:
         
     | 
| 243 | 
         
            +
                        steps = math.ceil(1 / max(0.10, strength))
         
     | 
| 244 | 
         | 
| 245 | 
         
             
                    results = pipe(
         
     | 
| 246 | 
         
             
                        image=params.image,
         
     | 
| 247 | 
         
             
                        control_image=control_image,
         
     | 
| 248 | 
         
             
                        prompt_embeds=prompt_embeds,
         
     | 
| 249 | 
         
             
                        generator=generator,
         
     | 
| 250 | 
         
            +
                        strength=strength,
         
     | 
| 251 | 
         
            +
                        num_inference_steps=steps,
         
     | 
| 252 | 
         
             
                        guidance_scale=params.guidance_scale,
         
     | 
| 253 | 
         
             
                        width=params.width,
         
     | 
| 254 | 
         
             
                        height=params.height,
         
     | 
    	
        pipelines/controlnetLoraSDXL.py
    CHANGED
    
    | 
         @@ -3,6 +3,7 @@ from diffusers import ( 
     | 
|
| 3 | 
         
             
                ControlNetModel,
         
     | 
| 4 | 
         
             
                LCMScheduler,
         
     | 
| 5 | 
         
             
                AutoencoderKL,
         
     | 
| 
         | 
|
| 6 | 
         
             
            )
         
     | 
| 7 | 
         
             
            from compel import Compel, ReturnedEmbeddingsType
         
     | 
| 8 | 
         
             
            import torch
         
     | 
| 
         @@ -17,10 +18,12 @@ import psutil 
     | 
|
| 17 | 
         
             
            from config import Args
         
     | 
| 18 | 
         
             
            from pydantic import BaseModel, Field
         
     | 
| 19 | 
         
             
            from PIL import Image
         
     | 
| 
         | 
|
| 20 | 
         | 
| 21 | 
         
             
            controlnet_model = "diffusers/controlnet-canny-sdxl-1.0"
         
     | 
| 22 | 
         
             
            model_id = "stabilityai/stable-diffusion-xl-base-1.0"
         
     | 
| 23 | 
         
             
            lcm_lora_id = "latent-consistency/lcm-lora-sdxl"
         
     | 
| 
         | 
|
| 24 | 
         | 
| 25 | 
         | 
| 26 | 
         
             
            default_prompt = "Portrait of The Terminator with , glare pose, detailed, intricate, full of colour, cinematic lighting, trending on artstation, 8k, hyperrealistic, focused, extreme details, unreal engine 5 cinematic, masterpiece"
         
     | 
| 
         @@ -77,7 +80,7 @@ class Pipeline: 
     | 
|
| 77 | 
         
             
                        2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
         
     | 
| 78 | 
         
             
                    )
         
     | 
| 79 | 
         
             
                    steps: int = Field(
         
     | 
| 80 | 
         
            -
                         
     | 
| 81 | 
         
             
                    )
         
     | 
| 82 | 
         
             
                    width: int = Field(
         
     | 
| 83 | 
         
             
                        1024, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
         
     | 
| 
         @@ -96,10 +99,10 @@ class Pipeline: 
     | 
|
| 96 | 
         
             
                        id="guidance_scale",
         
     | 
| 97 | 
         
             
                    )
         
     | 
| 98 | 
         
             
                    strength: float = Field(
         
     | 
| 99 | 
         
            -
                         
     | 
| 100 | 
         
             
                        min=0.25,
         
     | 
| 101 | 
         
             
                        max=1.0,
         
     | 
| 102 | 
         
            -
                        step=0. 
     | 
| 103 | 
         
             
                        title="Strength",
         
     | 
| 104 | 
         
             
                        field="range",
         
     | 
| 105 | 
         
             
                        hide=True,
         
     | 
| 
         @@ -208,6 +211,10 @@ class Pipeline: 
     | 
|
| 208 | 
         
             
                        returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
         
     | 
| 209 | 
         
             
                        requires_pooled=[False, True],
         
     | 
| 210 | 
         
             
                    )
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 211 | 
         | 
| 212 | 
         
             
                    if args.torch_compile:
         
     | 
| 213 | 
         
             
                        self.pipe.unet = torch.compile(
         
     | 
| 
         @@ -231,6 +238,10 @@ class Pipeline: 
     | 
|
| 231 | 
         
             
                    control_image = self.canny_torch(
         
     | 
| 232 | 
         
             
                        params.image, params.canny_low_threshold, params.canny_high_threshold
         
     | 
| 233 | 
         
             
                    )
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 234 | 
         | 
| 235 | 
         
             
                    results = self.pipe(
         
     | 
| 236 | 
         
             
                        image=params.image,
         
     | 
| 
         @@ -240,8 +251,8 @@ class Pipeline: 
     | 
|
| 240 | 
         
             
                        negative_prompt_embeds=prompt_embeds[1:2],
         
     | 
| 241 | 
         
             
                        negative_pooled_prompt_embeds=pooled_prompt_embeds[1:2],
         
     | 
| 242 | 
         
             
                        generator=generator,
         
     | 
| 243 | 
         
            -
                        strength= 
     | 
| 244 | 
         
            -
                        num_inference_steps= 
     | 
| 245 | 
         
             
                        guidance_scale=params.guidance_scale,
         
     | 
| 246 | 
         
             
                        width=params.width,
         
     | 
| 247 | 
         
             
                        height=params.height,
         
     | 
| 
         | 
|
| 3 | 
         
             
                ControlNetModel,
         
     | 
| 4 | 
         
             
                LCMScheduler,
         
     | 
| 5 | 
         
             
                AutoencoderKL,
         
     | 
| 6 | 
         
            +
                AutoencoderTiny,
         
     | 
| 7 | 
         
             
            )
         
     | 
| 8 | 
         
             
            from compel import Compel, ReturnedEmbeddingsType
         
     | 
| 9 | 
         
             
            import torch
         
     | 
| 
         | 
|
| 18 | 
         
             
            from config import Args
         
     | 
| 19 | 
         
             
            from pydantic import BaseModel, Field
         
     | 
| 20 | 
         
             
            from PIL import Image
         
     | 
| 21 | 
         
            +
            import math
         
     | 
| 22 | 
         | 
| 23 | 
         
             
            controlnet_model = "diffusers/controlnet-canny-sdxl-1.0"
         
     | 
| 24 | 
         
             
            model_id = "stabilityai/stable-diffusion-xl-base-1.0"
         
     | 
| 25 | 
         
             
            lcm_lora_id = "latent-consistency/lcm-lora-sdxl"
         
     | 
| 26 | 
         
            +
            taesd_model = "madebyollin/taesdxl"
         
     | 
| 27 | 
         | 
| 28 | 
         | 
| 29 | 
         
             
            default_prompt = "Portrait of The Terminator with , glare pose, detailed, intricate, full of colour, cinematic lighting, trending on artstation, 8k, hyperrealistic, focused, extreme details, unreal engine 5 cinematic, masterpiece"
         
     | 
| 
         | 
|
| 80 | 
         
             
                        2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
         
     | 
| 81 | 
         
             
                    )
         
     | 
| 82 | 
         
             
                    steps: int = Field(
         
     | 
| 83 | 
         
            +
                        2, min=1, max=15, title="Steps", field="range", hide=True, id="steps"
         
     | 
| 84 | 
         
             
                    )
         
     | 
| 85 | 
         
             
                    width: int = Field(
         
     | 
| 86 | 
         
             
                        1024, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
         
     | 
| 
         | 
|
| 99 | 
         
             
                        id="guidance_scale",
         
     | 
| 100 | 
         
             
                    )
         
     | 
| 101 | 
         
             
                    strength: float = Field(
         
     | 
| 102 | 
         
            +
                        1,
         
     | 
| 103 | 
         
             
                        min=0.25,
         
     | 
| 104 | 
         
             
                        max=1.0,
         
     | 
| 105 | 
         
            +
                        step=0.0001,
         
     | 
| 106 | 
         
             
                        title="Strength",
         
     | 
| 107 | 
         
             
                        field="range",
         
     | 
| 108 | 
         
             
                        hide=True,
         
     | 
| 
         | 
|
| 211 | 
         
             
                        returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
         
     | 
| 212 | 
         
             
                        requires_pooled=[False, True],
         
     | 
| 213 | 
         
             
                    )
         
     | 
| 214 | 
         
            +
                    if args.use_taesd:
         
     | 
| 215 | 
         
            +
                        self.pipe.vae = AutoencoderTiny.from_pretrained(
         
     | 
| 216 | 
         
            +
                            taesd_model, torch_dtype=torch_dtype, use_safetensors=True
         
     | 
| 217 | 
         
            +
                        ).to(device)
         
     | 
| 218 | 
         | 
| 219 | 
         
             
                    if args.torch_compile:
         
     | 
| 220 | 
         
             
                        self.pipe.unet = torch.compile(
         
     | 
| 
         | 
|
| 238 | 
         
             
                    control_image = self.canny_torch(
         
     | 
| 239 | 
         
             
                        params.image, params.canny_low_threshold, params.canny_high_threshold
         
     | 
| 240 | 
         
             
                    )
         
     | 
| 241 | 
         
            +
                    steps = params.steps
         
     | 
| 242 | 
         
            +
                    strength = params.strength
         
     | 
| 243 | 
         
            +
                    if int(steps * strength) < 1:
         
     | 
| 244 | 
         
            +
                        steps = math.ceil(1 / max(0.10, strength))
         
     | 
| 245 | 
         | 
| 246 | 
         
             
                    results = self.pipe(
         
     | 
| 247 | 
         
             
                        image=params.image,
         
     | 
| 
         | 
|
| 251 | 
         
             
                        negative_prompt_embeds=prompt_embeds[1:2],
         
     | 
| 252 | 
         
             
                        negative_pooled_prompt_embeds=pooled_prompt_embeds[1:2],
         
     | 
| 253 | 
         
             
                        generator=generator,
         
     | 
| 254 | 
         
            +
                        strength=strength,
         
     | 
| 255 | 
         
            +
                        num_inference_steps=steps,
         
     | 
| 256 | 
         
             
                        guidance_scale=params.guidance_scale,
         
     | 
| 257 | 
         
             
                        width=params.width,
         
     | 
| 258 | 
         
             
                        height=params.height,
         
     | 
    	
        pipelines/controlnetSDXLTurbo.py
    CHANGED
    
    | 
         @@ -2,6 +2,7 @@ from diffusers import ( 
     | 
|
| 2 | 
         
             
                StableDiffusionXLControlNetImg2ImgPipeline,
         
     | 
| 3 | 
         
             
                ControlNetModel,
         
     | 
| 4 | 
         
             
                AutoencoderKL,
         
     | 
| 
         | 
|
| 5 | 
         
             
            )
         
     | 
| 6 | 
         
             
            from compel import Compel, ReturnedEmbeddingsType
         
     | 
| 7 | 
         
             
            import torch
         
     | 
| 
         @@ -20,6 +21,7 @@ import math 
     | 
|
| 20 | 
         | 
| 21 | 
         
             
            controlnet_model = "diffusers/controlnet-canny-sdxl-1.0"
         
     | 
| 22 | 
         
             
            model_id = "stabilityai/sdxl-turbo"
         
     | 
| 
         | 
|
| 23 | 
         | 
| 24 | 
         
             
            default_prompt = "Portrait of The Terminator with , glare pose, detailed, intricate, full of colour, cinematic lighting, trending on artstation, 8k, hyperrealistic, focused, extreme details, unreal engine 5 cinematic, masterpiece"
         
     | 
| 25 | 
         
             
            default_negative_prompt = "blurry, low quality, render, 3D, oversaturated"
         
     | 
| 
         @@ -75,18 +77,18 @@ class Pipeline: 
     | 
|
| 75 | 
         
             
                        2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
         
     | 
| 76 | 
         
             
                    )
         
     | 
| 77 | 
         
             
                    steps: int = Field(
         
     | 
| 78 | 
         
            -
                         
     | 
| 79 | 
         
             
                    )
         
     | 
| 80 | 
         
             
                    width: int = Field(
         
     | 
| 81 | 
         
            -
                         
     | 
| 82 | 
         
             
                    )
         
     | 
| 83 | 
         
             
                    height: int = Field(
         
     | 
| 84 | 
         
            -
                         
     | 
| 85 | 
         
             
                    )
         
     | 
| 86 | 
         
             
                    guidance_scale: float = Field(
         
     | 
| 87 | 
         
             
                        1.0,
         
     | 
| 88 | 
         
             
                        min=0,
         
     | 
| 89 | 
         
            -
                        max= 
     | 
| 90 | 
         
             
                        step=0.001,
         
     | 
| 91 | 
         
             
                        title="Guidance Scale",
         
     | 
| 92 | 
         
             
                        field="range",
         
     | 
| 
         @@ -197,6 +199,10 @@ class Pipeline: 
     | 
|
| 197 | 
         
             
                        returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
         
     | 
| 198 | 
         
             
                        requires_pooled=[False, True],
         
     | 
| 199 | 
         
             
                    )
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 200 | 
         | 
| 201 | 
         
             
                    if args.torch_compile:
         
     | 
| 202 | 
         
             
                        self.pipe.unet = torch.compile(
         
     | 
| 
         | 
|
| 2 | 
         
             
                StableDiffusionXLControlNetImg2ImgPipeline,
         
     | 
| 3 | 
         
             
                ControlNetModel,
         
     | 
| 4 | 
         
             
                AutoencoderKL,
         
     | 
| 5 | 
         
            +
                AutoencoderTiny,
         
     | 
| 6 | 
         
             
            )
         
     | 
| 7 | 
         
             
            from compel import Compel, ReturnedEmbeddingsType
         
     | 
| 8 | 
         
             
            import torch
         
     | 
| 
         | 
|
| 21 | 
         | 
| 22 | 
         
             
            controlnet_model = "diffusers/controlnet-canny-sdxl-1.0"
         
     | 
| 23 | 
         
             
            model_id = "stabilityai/sdxl-turbo"
         
     | 
| 24 | 
         
            +
            taesd_model = "madebyollin/taesdxl"
         
     | 
| 25 | 
         | 
| 26 | 
         
             
            default_prompt = "Portrait of The Terminator with , glare pose, detailed, intricate, full of colour, cinematic lighting, trending on artstation, 8k, hyperrealistic, focused, extreme details, unreal engine 5 cinematic, masterpiece"
         
     | 
| 27 | 
         
             
            default_negative_prompt = "blurry, low quality, render, 3D, oversaturated"
         
     | 
| 
         | 
|
| 77 | 
         
             
                        2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
         
     | 
| 78 | 
         
             
                    )
         
     | 
| 79 | 
         
             
                    steps: int = Field(
         
     | 
| 80 | 
         
            +
                        2, min=1, max=15, title="Steps", field="range", hide=True, id="steps"
         
     | 
| 81 | 
         
             
                    )
         
     | 
| 82 | 
         
             
                    width: int = Field(
         
     | 
| 83 | 
         
            +
                        1024, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
         
     | 
| 84 | 
         
             
                    )
         
     | 
| 85 | 
         
             
                    height: int = Field(
         
     | 
| 86 | 
         
            +
                        1024, min=2, max=15, title="Height", disabled=True, hide=True, id="height"
         
     | 
| 87 | 
         
             
                    )
         
     | 
| 88 | 
         
             
                    guidance_scale: float = Field(
         
     | 
| 89 | 
         
             
                        1.0,
         
     | 
| 90 | 
         
             
                        min=0,
         
     | 
| 91 | 
         
            +
                        max=10,
         
     | 
| 92 | 
         
             
                        step=0.001,
         
     | 
| 93 | 
         
             
                        title="Guidance Scale",
         
     | 
| 94 | 
         
             
                        field="range",
         
     | 
| 
         | 
|
| 199 | 
         
             
                        returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
         
     | 
| 200 | 
         
             
                        requires_pooled=[False, True],
         
     | 
| 201 | 
         
             
                    )
         
     | 
| 202 | 
         
            +
                    if args.use_taesd:
         
     | 
| 203 | 
         
            +
                        self.pipe.vae = AutoencoderTiny.from_pretrained(
         
     | 
| 204 | 
         
            +
                            taesd_model, torch_dtype=torch_dtype, use_safetensors=True
         
     | 
| 205 | 
         
            +
                        ).to(device)
         
     | 
| 206 | 
         | 
| 207 | 
         
             
                    if args.torch_compile:
         
     | 
| 208 | 
         
             
                        self.pipe.unet = torch.compile(
         
     | 
    	
        pipelines/img2img.py
    CHANGED
    
    | 
         @@ -14,6 +14,7 @@ import psutil 
     | 
|
| 14 | 
         
             
            from config import Args
         
     | 
| 15 | 
         
             
            from pydantic import BaseModel, Field
         
     | 
| 16 | 
         
             
            from PIL import Image
         
     | 
| 
         | 
|
| 17 | 
         | 
| 18 | 
         
             
            base_model = "SimianLuo/LCM_Dreamshaper_v7"
         
     | 
| 19 | 
         
             
            taesd_model = "madebyollin/taesd"
         
     | 
| 
         @@ -64,13 +65,13 @@ class Pipeline: 
     | 
|
| 64 | 
         
             
                        2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
         
     | 
| 65 | 
         
             
                    )
         
     | 
| 66 | 
         
             
                    steps: int = Field(
         
     | 
| 67 | 
         
            -
                        4, min= 
     | 
| 68 | 
         
             
                    )
         
     | 
| 69 | 
         
             
                    width: int = Field(
         
     | 
| 70 | 
         
            -
                         
     | 
| 71 | 
         
             
                    )
         
     | 
| 72 | 
         
             
                    height: int = Field(
         
     | 
| 73 | 
         
            -
                         
     | 
| 74 | 
         
             
                    )
         
     | 
| 75 | 
         
             
                    guidance_scale: float = Field(
         
     | 
| 76 | 
         
             
                        0.2,
         
     | 
| 
         @@ -104,7 +105,7 @@ class Pipeline: 
     | 
|
| 104 | 
         
             
                    if args.use_taesd:
         
     | 
| 105 | 
         
             
                        self.pipe.vae = AutoencoderTiny.from_pretrained(
         
     | 
| 106 | 
         
             
                            taesd_model, torch_dtype=torch_dtype, use_safetensors=True
         
     | 
| 107 | 
         
            -
                        )
         
     | 
| 108 | 
         | 
| 109 | 
         
             
                    self.pipe.set_progress_bar_config(disable=True)
         
     | 
| 110 | 
         
             
                    self.pipe.to(device=device, dtype=torch_dtype)
         
     | 
| 
         @@ -138,12 +139,18 @@ class Pipeline: 
     | 
|
| 138 | 
         
             
                def predict(self, params: "Pipeline.InputParams") -> Image.Image:
         
     | 
| 139 | 
         
             
                    generator = torch.manual_seed(params.seed)
         
     | 
| 140 | 
         
             
                    prompt_embeds = self.compel_proc(params.prompt)
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 141 | 
         
             
                    results = self.pipe(
         
     | 
| 142 | 
         
             
                        image=params.image,
         
     | 
| 143 | 
         
             
                        prompt_embeds=prompt_embeds,
         
     | 
| 144 | 
         
             
                        generator=generator,
         
     | 
| 145 | 
         
            -
                        strength= 
     | 
| 146 | 
         
            -
                        num_inference_steps= 
     | 
| 147 | 
         
             
                        guidance_scale=params.guidance_scale,
         
     | 
| 148 | 
         
             
                        width=params.width,
         
     | 
| 149 | 
         
             
                        height=params.height,
         
     | 
| 
         | 
|
| 14 | 
         
             
            from config import Args
         
     | 
| 15 | 
         
             
            from pydantic import BaseModel, Field
         
     | 
| 16 | 
         
             
            from PIL import Image
         
     | 
| 17 | 
         
            +
            import math
         
     | 
| 18 | 
         | 
| 19 | 
         
             
            base_model = "SimianLuo/LCM_Dreamshaper_v7"
         
     | 
| 20 | 
         
             
            taesd_model = "madebyollin/taesd"
         
     | 
| 
         | 
|
| 65 | 
         
             
                        2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
         
     | 
| 66 | 
         
             
                    )
         
     | 
| 67 | 
         
             
                    steps: int = Field(
         
     | 
| 68 | 
         
            +
                        4, min=1, max=15, title="Steps", field="range", hide=True, id="steps"
         
     | 
| 69 | 
         
             
                    )
         
     | 
| 70 | 
         
             
                    width: int = Field(
         
     | 
| 71 | 
         
            +
                        768, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
         
     | 
| 72 | 
         
             
                    )
         
     | 
| 73 | 
         
             
                    height: int = Field(
         
     | 
| 74 | 
         
            +
                        768, min=2, max=15, title="Height", disabled=True, hide=True, id="height"
         
     | 
| 75 | 
         
             
                    )
         
     | 
| 76 | 
         
             
                    guidance_scale: float = Field(
         
     | 
| 77 | 
         
             
                        0.2,
         
     | 
| 
         | 
|
| 105 | 
         
             
                    if args.use_taesd:
         
     | 
| 106 | 
         
             
                        self.pipe.vae = AutoencoderTiny.from_pretrained(
         
     | 
| 107 | 
         
             
                            taesd_model, torch_dtype=torch_dtype, use_safetensors=True
         
     | 
| 108 | 
         
            +
                        ).to(device)
         
     | 
| 109 | 
         | 
| 110 | 
         
             
                    self.pipe.set_progress_bar_config(disable=True)
         
     | 
| 111 | 
         
             
                    self.pipe.to(device=device, dtype=torch_dtype)
         
     | 
| 
         | 
|
| 139 | 
         
             
                def predict(self, params: "Pipeline.InputParams") -> Image.Image:
         
     | 
| 140 | 
         
             
                    generator = torch.manual_seed(params.seed)
         
     | 
| 141 | 
         
             
                    prompt_embeds = self.compel_proc(params.prompt)
         
     | 
| 142 | 
         
            +
             
     | 
| 143 | 
         
            +
                    steps = params.steps
         
     | 
| 144 | 
         
            +
                    strength = params.strength
         
     | 
| 145 | 
         
            +
                    if int(steps * strength) < 1:
         
     | 
| 146 | 
         
            +
                        steps = math.ceil(1 / max(0.10, strength))
         
     | 
| 147 | 
         
            +
             
     | 
| 148 | 
         
             
                    results = self.pipe(
         
     | 
| 149 | 
         
             
                        image=params.image,
         
     | 
| 150 | 
         
             
                        prompt_embeds=prompt_embeds,
         
     | 
| 151 | 
         
             
                        generator=generator,
         
     | 
| 152 | 
         
            +
                        strength=strength,
         
     | 
| 153 | 
         
            +
                        num_inference_steps=steps,
         
     | 
| 154 | 
         
             
                        guidance_scale=params.guidance_scale,
         
     | 
| 155 | 
         
             
                        width=params.width,
         
     | 
| 156 | 
         
             
                        height=params.height,
         
     | 
    	
        pipelines/img2imgSDXLTurbo.py
    CHANGED
    
    | 
         @@ -17,7 +17,7 @@ from PIL import Image 
     | 
|
| 17 | 
         
             
            import math
         
     | 
| 18 | 
         | 
| 19 | 
         
             
            base_model = "stabilityai/sdxl-turbo"
         
     | 
| 20 | 
         
            -
            taesd_model = "madebyollin/ 
     | 
| 21 | 
         | 
| 22 | 
         
             
            default_prompt = "close-up photography of old man standing in the rain at night, in a street lit by lamps, leica 35mm summilux"
         
     | 
| 23 | 
         
             
            default_negative_prompt = "blurry, low quality, render, 3D, oversaturated"
         
     | 
| 
         @@ -113,7 +113,7 @@ class Pipeline: 
     | 
|
| 113 | 
         
             
                    if args.use_taesd:
         
     | 
| 114 | 
         
             
                        self.pipe.vae = AutoencoderTiny.from_pretrained(
         
     | 
| 115 | 
         
             
                            taesd_model, torch_dtype=torch_dtype, use_safetensors=True
         
     | 
| 116 | 
         
            -
                        )
         
     | 
| 117 | 
         | 
| 118 | 
         
             
                    self.pipe.set_progress_bar_config(disable=True)
         
     | 
| 119 | 
         
             
                    self.pipe.to(device=device, dtype=torch_dtype)
         
     | 
| 
         | 
|
| 17 | 
         
             
            import math
         
     | 
| 18 | 
         | 
| 19 | 
         
             
            base_model = "stabilityai/sdxl-turbo"
         
     | 
| 20 | 
         
            +
            taesd_model = "madebyollin/taesdxl"
         
     | 
| 21 | 
         | 
| 22 | 
         
             
            default_prompt = "close-up photography of old man standing in the rain at night, in a street lit by lamps, leica 35mm summilux"
         
     | 
| 23 | 
         
             
            default_negative_prompt = "blurry, low quality, render, 3D, oversaturated"
         
     | 
| 
         | 
|
| 113 | 
         
             
                    if args.use_taesd:
         
     | 
| 114 | 
         
             
                        self.pipe.vae = AutoencoderTiny.from_pretrained(
         
     | 
| 115 | 
         
             
                            taesd_model, torch_dtype=torch_dtype, use_safetensors=True
         
     | 
| 116 | 
         
            +
                        ).to(device)
         
     | 
| 117 | 
         | 
| 118 | 
         
             
                    self.pipe.set_progress_bar_config(disable=True)
         
     | 
| 119 | 
         
             
                    self.pipe.to(device=device, dtype=torch_dtype)
         
     | 
    	
        pipelines/txt2img.py
    CHANGED
    
    | 
         @@ -62,10 +62,10 @@ class Pipeline: 
     | 
|
| 62 | 
         
             
                        4, min=2, max=15, title="Steps", field="range", hide=True, id="steps"
         
     | 
| 63 | 
         
             
                    )
         
     | 
| 64 | 
         
             
                    width: int = Field(
         
     | 
| 65 | 
         
            -
                         
     | 
| 66 | 
         
             
                    )
         
     | 
| 67 | 
         
             
                    height: int = Field(
         
     | 
| 68 | 
         
            -
                         
     | 
| 69 | 
         
             
                    )
         
     | 
| 70 | 
         
             
                    guidance_scale: float = Field(
         
     | 
| 71 | 
         
             
                        8.0,
         
     | 
| 
         @@ -88,7 +88,7 @@ class Pipeline: 
     | 
|
| 88 | 
         
             
                    if args.use_taesd:
         
     | 
| 89 | 
         
             
                        self.pipe.vae = AutoencoderTiny.from_pretrained(
         
     | 
| 90 | 
         
             
                            taesd_model, torch_dtype=torch_dtype, use_safetensors=True
         
     | 
| 91 | 
         
            -
                        )
         
     | 
| 92 | 
         | 
| 93 | 
         
             
                    self.pipe.set_progress_bar_config(disable=True)
         
     | 
| 94 | 
         
             
                    self.pipe.to(device=device, dtype=torch_dtype)
         
     | 
| 
         | 
|
| 62 | 
         
             
                        4, min=2, max=15, title="Steps", field="range", hide=True, id="steps"
         
     | 
| 63 | 
         
             
                    )
         
     | 
| 64 | 
         
             
                    width: int = Field(
         
     | 
| 65 | 
         
            +
                        768, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
         
     | 
| 66 | 
         
             
                    )
         
     | 
| 67 | 
         
             
                    height: int = Field(
         
     | 
| 68 | 
         
            +
                        768, min=2, max=15, title="Height", disabled=True, hide=True, id="height"
         
     | 
| 69 | 
         
             
                    )
         
     | 
| 70 | 
         
             
                    guidance_scale: float = Field(
         
     | 
| 71 | 
         
             
                        8.0,
         
     | 
| 
         | 
|
| 88 | 
         
             
                    if args.use_taesd:
         
     | 
| 89 | 
         
             
                        self.pipe.vae = AutoencoderTiny.from_pretrained(
         
     | 
| 90 | 
         
             
                            taesd_model, torch_dtype=torch_dtype, use_safetensors=True
         
     | 
| 91 | 
         
            +
                        ).to(device)
         
     | 
| 92 | 
         | 
| 93 | 
         
             
                    self.pipe.set_progress_bar_config(disable=True)
         
     | 
| 94 | 
         
             
                    self.pipe.to(device=device, dtype=torch_dtype)
         
     | 
    	
        pipelines/txt2imgLora.py
    CHANGED
    
    | 
         @@ -95,7 +95,7 @@ class Pipeline: 
     | 
|
| 95 | 
         
             
                    if args.use_taesd:
         
     | 
| 96 | 
         
             
                        self.pipe.vae = AutoencoderTiny.from_pretrained(
         
     | 
| 97 | 
         
             
                            taesd_model, torch_dtype=torch_dtype, use_safetensors=True
         
     | 
| 98 | 
         
            -
                        )
         
     | 
| 99 | 
         
             
                    self.pipe.scheduler = LCMScheduler.from_config(self.pipe.scheduler.config)
         
     | 
| 100 | 
         
             
                    self.pipe.set_progress_bar_config(disable=True)
         
     | 
| 101 | 
         
             
                    self.pipe.to(device=device, dtype=torch_dtype)
         
     | 
| 
         | 
|
| 95 | 
         
             
                    if args.use_taesd:
         
     | 
| 96 | 
         
             
                        self.pipe.vae = AutoencoderTiny.from_pretrained(
         
     | 
| 97 | 
         
             
                            taesd_model, torch_dtype=torch_dtype, use_safetensors=True
         
     | 
| 98 | 
         
            +
                        ).to(device)
         
     | 
| 99 | 
         
             
                    self.pipe.scheduler = LCMScheduler.from_config(self.pipe.scheduler.config)
         
     | 
| 100 | 
         
             
                    self.pipe.set_progress_bar_config(disable=True)
         
     | 
| 101 | 
         
             
                    self.pipe.to(device=device, dtype=torch_dtype)
         
     | 
    	
        pipelines/txt2imgLoraSDXL.py
    CHANGED
    
    | 
         @@ -1,8 +1,4 @@ 
     | 
|
| 1 | 
         
            -
            from diffusers import  
     | 
| 2 | 
         
            -
                DiffusionPipeline,
         
     | 
| 3 | 
         
            -
                LCMScheduler,
         
     | 
| 4 | 
         
            -
                AutoencoderKL,
         
     | 
| 5 | 
         
            -
            )
         
     | 
| 6 | 
         
             
            from compel import Compel, ReturnedEmbeddingsType
         
     | 
| 7 | 
         
             
            import torch
         
     | 
| 8 | 
         | 
| 
         @@ -16,9 +12,9 @@ from config import Args 
     | 
|
| 16 | 
         
             
            from pydantic import BaseModel, Field
         
     | 
| 17 | 
         
             
            from PIL import Image
         
     | 
| 18 | 
         | 
| 19 | 
         
            -
            controlnet_model = "diffusers/controlnet-canny-sdxl-1.0"
         
     | 
| 20 | 
         
             
            model_id = "stabilityai/stable-diffusion-xl-base-1.0"
         
     | 
| 21 | 
         
             
            lcm_lora_id = "latent-consistency/lcm-lora-sdxl"
         
     | 
| 
         | 
|
| 22 | 
         | 
| 23 | 
         | 
| 24 | 
         
             
            default_prompt = "close-up photography of old man standing in the rain at night, in a street lit by lamps, leica 35mm summilux"
         
     | 
| 
         @@ -76,7 +72,7 @@ class Pipeline: 
     | 
|
| 76 | 
         
             
                        2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
         
     | 
| 77 | 
         
             
                    )
         
     | 
| 78 | 
         
             
                    steps: int = Field(
         
     | 
| 79 | 
         
            -
                        4, min= 
     | 
| 80 | 
         
             
                    )
         
     | 
| 81 | 
         
             
                    width: int = Field(
         
     | 
| 82 | 
         
             
                        1024, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
         
     | 
| 
         @@ -127,6 +123,10 @@ class Pipeline: 
     | 
|
| 127 | 
         
             
                        returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
         
     | 
| 128 | 
         
             
                        requires_pooled=[False, True],
         
     | 
| 129 | 
         
             
                    )
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 130 | 
         | 
| 131 | 
         
             
                    if args.torch_compile:
         
     | 
| 132 | 
         
             
                        self.pipe.unet = torch.compile(
         
     | 
| 
         | 
|
| 1 | 
         
            +
            from diffusers import DiffusionPipeline, LCMScheduler, AutoencoderKL, AutoencoderTiny
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 2 | 
         
             
            from compel import Compel, ReturnedEmbeddingsType
         
     | 
| 3 | 
         
             
            import torch
         
     | 
| 4 | 
         | 
| 
         | 
|
| 12 | 
         
             
            from pydantic import BaseModel, Field
         
     | 
| 13 | 
         
             
            from PIL import Image
         
     | 
| 14 | 
         | 
| 
         | 
|
| 15 | 
         
             
            model_id = "stabilityai/stable-diffusion-xl-base-1.0"
         
     | 
| 16 | 
         
             
            lcm_lora_id = "latent-consistency/lcm-lora-sdxl"
         
     | 
| 17 | 
         
            +
            taesd_model = "madebyollin/taesdxl"
         
     | 
| 18 | 
         | 
| 19 | 
         | 
| 20 | 
         
             
            default_prompt = "close-up photography of old man standing in the rain at night, in a street lit by lamps, leica 35mm summilux"
         
     | 
| 
         | 
|
| 72 | 
         
             
                        2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
         
     | 
| 73 | 
         
             
                    )
         
     | 
| 74 | 
         
             
                    steps: int = Field(
         
     | 
| 75 | 
         
            +
                        4, min=1, max=15, title="Steps", field="range", hide=True, id="steps"
         
     | 
| 76 | 
         
             
                    )
         
     | 
| 77 | 
         
             
                    width: int = Field(
         
     | 
| 78 | 
         
             
                        1024, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
         
     | 
| 
         | 
|
| 123 | 
         
             
                        returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
         
     | 
| 124 | 
         
             
                        requires_pooled=[False, True],
         
     | 
| 125 | 
         
             
                    )
         
     | 
| 126 | 
         
            +
                    if args.use_taesd:
         
     | 
| 127 | 
         
            +
                        self.pipe.vae = AutoencoderTiny.from_pretrained(
         
     | 
| 128 | 
         
            +
                            taesd_model, torch_dtype=torch_dtype, use_safetensors=True
         
     | 
| 129 | 
         
            +
                        ).to(device)
         
     | 
| 130 | 
         | 
| 131 | 
         
             
                    if args.torch_compile:
         
     | 
| 132 | 
         
             
                        self.pipe.unet = torch.compile(
         
     |