Spaces:
Sleeping
Sleeping
Init - create App.py
Browse files
app.py
ADDED
@@ -0,0 +1,405 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import warnings
|
3 |
+
import torch
|
4 |
+
import os
|
5 |
+
import whisper
|
6 |
+
import ssl
|
7 |
+
import zipfile
|
8 |
+
from pydub import AudioSegment
|
9 |
+
from pydub.silence import detect_nonsilent
|
10 |
+
import subprocess
|
11 |
+
import tempfile
|
12 |
+
import time
|
13 |
+
|
14 |
+
ssl._create_default_https_context = ssl._create_unverified_context
|
15 |
+
|
16 |
+
def process_audio(
|
17 |
+
audio_paths,
|
18 |
+
remove_silence=False,
|
19 |
+
min_silence_len=500,
|
20 |
+
silence_thresh=-50,
|
21 |
+
enable_chunking=False,
|
22 |
+
chunk_duration=600,
|
23 |
+
ffmpeg_path="ffmpeg",
|
24 |
+
model_size="large-v3-turbo",
|
25 |
+
language="de"
|
26 |
+
):
|
27 |
+
try:
|
28 |
+
if not audio_paths:
|
29 |
+
return "No files selected.", "", None
|
30 |
+
|
31 |
+
# Clean up any existing temp directory at the start
|
32 |
+
temp_dir = "temp_processing"
|
33 |
+
if os.path.exists(temp_dir):
|
34 |
+
for file in os.listdir(temp_dir):
|
35 |
+
file_path = os.path.join(temp_dir, file)
|
36 |
+
try:
|
37 |
+
if os.path.isfile(file_path):
|
38 |
+
os.remove(file_path)
|
39 |
+
except Exception as e:
|
40 |
+
print(f"Error cleaning up {file_path}: {e}")
|
41 |
+
try:
|
42 |
+
os.rmdir(temp_dir)
|
43 |
+
except Exception as e:
|
44 |
+
print(f"Error removing temp directory: {e}")
|
45 |
+
|
46 |
+
# Create fresh temp directory with unique timestamp
|
47 |
+
temp_dir = f"temp_processing_{int(time.time())}"
|
48 |
+
os.makedirs(temp_dir, exist_ok=True)
|
49 |
+
|
50 |
+
processed_files = []
|
51 |
+
all_results = []
|
52 |
+
all_segments = []
|
53 |
+
all_txt_paths = []
|
54 |
+
|
55 |
+
try:
|
56 |
+
# Step 1: Process each audio file
|
57 |
+
for audio_path in audio_paths:
|
58 |
+
if not audio_path:
|
59 |
+
continue
|
60 |
+
|
61 |
+
current_file = audio_path
|
62 |
+
temp_files = []
|
63 |
+
|
64 |
+
# Step 1a: Split audio if chunking is enabled
|
65 |
+
if enable_chunking:
|
66 |
+
base_name = os.path.splitext(os.path.basename(current_file))[0]
|
67 |
+
output_pattern = os.path.join(temp_dir, f"{base_name}_part_%d.mp3")
|
68 |
+
|
69 |
+
cmd = [
|
70 |
+
ffmpeg_path, "-i", current_file,
|
71 |
+
"-f", "segment",
|
72 |
+
"-segment_time", str(chunk_duration),
|
73 |
+
"-c:a", "copy",
|
74 |
+
"-segment_start_number", "1",
|
75 |
+
output_pattern
|
76 |
+
]
|
77 |
+
|
78 |
+
subprocess.run(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
79 |
+
chunk_files = sorted([os.path.join(temp_dir, f) for f in os.listdir(temp_dir)
|
80 |
+
if f.startswith(f"{base_name}_part_")])
|
81 |
+
temp_files.extend(chunk_files)
|
82 |
+
else:
|
83 |
+
temp_files.append(current_file)
|
84 |
+
|
85 |
+
# Step 1b: Remove silence if requested
|
86 |
+
if remove_silence:
|
87 |
+
silence_removed_files = []
|
88 |
+
for file in temp_files:
|
89 |
+
audio = AudioSegment.from_file(file)
|
90 |
+
nonsilent = detect_nonsilent(
|
91 |
+
audio,
|
92 |
+
min_silence_len=min_silence_len,
|
93 |
+
silence_thresh=silence_thresh
|
94 |
+
)
|
95 |
+
output = AudioSegment.empty()
|
96 |
+
for start, end in nonsilent:
|
97 |
+
output += audio[start:end]
|
98 |
+
|
99 |
+
# Save the silence-removed file
|
100 |
+
silence_removed_path = os.path.join(temp_dir, f"silence_removed_{os.path.basename(file)}")
|
101 |
+
output.export(silence_removed_path, format="mp3")
|
102 |
+
silence_removed_files.append(silence_removed_path)
|
103 |
+
processed_files.extend(silence_removed_files)
|
104 |
+
else:
|
105 |
+
processed_files.extend(temp_files)
|
106 |
+
|
107 |
+
# Step 2: Transcribe all processed files
|
108 |
+
print(f"Loading Whisper model '{model_size}'...")
|
109 |
+
model = whisper.load_model(model_size, device="cpu")
|
110 |
+
|
111 |
+
for file in processed_files:
|
112 |
+
print(f"Transcribing: {file}")
|
113 |
+
warnings.filterwarnings("ignore", message="FP16 is not supported on CPU; using FP32 instead")
|
114 |
+
|
115 |
+
result = model.transcribe(file, fp16=False, language=language, temperature=0.0)
|
116 |
+
|
117 |
+
full_text = result["text"]
|
118 |
+
segments = ""
|
119 |
+
for segment in result["segments"]:
|
120 |
+
segments += f"[{segment['start']:.2f} - {segment['end']:.2f}]: {segment['text']}\n"
|
121 |
+
|
122 |
+
# Store transcript files in temp directory
|
123 |
+
txt_path = os.path.join(temp_dir, f"transcript_{os.path.splitext(os.path.basename(file))[0]}.txt")
|
124 |
+
with open(txt_path, "w", encoding="utf-8") as f:
|
125 |
+
f.write("=== Full Transcription ===\n\n")
|
126 |
+
f.write(full_text)
|
127 |
+
f.write("\n\n=== Segment-wise Transcription ===\n")
|
128 |
+
f.write(segments)
|
129 |
+
|
130 |
+
all_results.append(full_text)
|
131 |
+
all_segments.append(segments)
|
132 |
+
all_txt_paths.append(txt_path)
|
133 |
+
|
134 |
+
# Create combined transcript file in temp directory
|
135 |
+
combined_txt_path = os.path.join(temp_dir, "combined_transcripts.txt")
|
136 |
+
with open(combined_txt_path, "w", encoding="utf-8") as f:
|
137 |
+
f.write("=== Combined Transcriptions ===\n\n")
|
138 |
+
for i, (result, segment, path) in enumerate(zip(all_results, all_segments, all_txt_paths)):
|
139 |
+
filename = os.path.basename(processed_files[i])
|
140 |
+
f.write(f"File: {filename}\n")
|
141 |
+
f.write("=== Full Transcription ===\n")
|
142 |
+
f.write(result)
|
143 |
+
f.write("\n\n=== Segment-wise Transcription ===\n")
|
144 |
+
f.write(segment)
|
145 |
+
f.write("\n" + "-"*50 + "\n\n")
|
146 |
+
|
147 |
+
# Format display output
|
148 |
+
combined_results = "=== File Transcriptions ===\n\n"
|
149 |
+
combined_segments = "=== File Segments ===\n\n"
|
150 |
+
for i, (result, segment) in enumerate(zip(all_results, all_segments)):
|
151 |
+
filename = os.path.basename(processed_files[i])
|
152 |
+
combined_results += f"File: {filename}\n{result}\n\n"
|
153 |
+
combined_segments += f"File: {filename}\n{segment}\n\n"
|
154 |
+
|
155 |
+
# Create ZIP with all processed files and transcripts
|
156 |
+
zip_path = f"processed_files_and_transcripts_{int(time.time())}.zip"
|
157 |
+
cleanup_files = processed_files.copy()
|
158 |
+
|
159 |
+
with zipfile.ZipFile(zip_path, 'w') as zipf:
|
160 |
+
for file in processed_files:
|
161 |
+
if os.path.exists(file):
|
162 |
+
zipf.write(file, os.path.basename(file))
|
163 |
+
for txt_file in all_txt_paths:
|
164 |
+
if os.path.exists(txt_file):
|
165 |
+
zipf.write(txt_file)
|
166 |
+
if os.path.exists(combined_txt_path):
|
167 |
+
zipf.write(combined_txt_path)
|
168 |
+
|
169 |
+
# Cleanup files after ZIP creation
|
170 |
+
for file in cleanup_files:
|
171 |
+
if os.path.exists(file):
|
172 |
+
os.remove(file)
|
173 |
+
for txt_file in all_txt_paths:
|
174 |
+
if os.path.exists(txt_file):
|
175 |
+
os.remove(txt_file)
|
176 |
+
if os.path.exists(combined_txt_path):
|
177 |
+
os.remove(combined_txt_path)
|
178 |
+
|
179 |
+
# Clean up temp directory
|
180 |
+
if os.path.exists(temp_dir):
|
181 |
+
for file in os.listdir(temp_dir):
|
182 |
+
file_path = os.path.join(temp_dir, file)
|
183 |
+
if os.path.isfile(file_path):
|
184 |
+
os.remove(file_path)
|
185 |
+
os.rmdir(temp_dir)
|
186 |
+
|
187 |
+
return combined_results, combined_segments, zip_path
|
188 |
+
|
189 |
+
except Exception as inner_e:
|
190 |
+
print(f"Error during processing: {inner_e}")
|
191 |
+
raise inner_e
|
192 |
+
|
193 |
+
except Exception as e:
|
194 |
+
print(f"Error in process_audio: {e}")
|
195 |
+
if 'temp_dir' in locals() and os.path.exists(temp_dir):
|
196 |
+
try:
|
197 |
+
for file in os.listdir(temp_dir):
|
198 |
+
file_path = os.path.join(temp_dir, file)
|
199 |
+
if os.path.isfile(file_path):
|
200 |
+
os.remove(file_path)
|
201 |
+
os.rmdir(temp_dir)
|
202 |
+
except:
|
203 |
+
pass
|
204 |
+
return f"Error: {str(e)}", "", None
|
205 |
+
|
206 |
+
def create_interface():
|
207 |
+
with gr.Blocks(title="Interview Audio Processing App") as app:
|
208 |
+
gr.Markdown("""
|
209 |
+
# Audio Processing App
|
210 |
+
Upload audio files (MP3 or M4A) for processing and transcription.\\
|
211 |
+
Intended use case: transcription of interviews.
|
212 |
+
""")
|
213 |
+
with gr.Row():
|
214 |
+
with gr.Column():
|
215 |
+
audio_input = gr.File(
|
216 |
+
label="Upload Audio Files",
|
217 |
+
file_count="multiple",
|
218 |
+
type="filepath"
|
219 |
+
)
|
220 |
+
|
221 |
+
with gr.Group():
|
222 |
+
gr.Markdown("### Silence Removal Settings")
|
223 |
+
gr.Markdown(" Default settings are working very well. Silence removal helps to reduce hallucination.")
|
224 |
+
remove_silence = gr.Checkbox(
|
225 |
+
label="Remove Silence",
|
226 |
+
value=False
|
227 |
+
)
|
228 |
+
|
229 |
+
min_silence_len = gr.Slider(
|
230 |
+
minimum=100,
|
231 |
+
maximum=2000,
|
232 |
+
value=500,
|
233 |
+
step=100,
|
234 |
+
label="Minimum Silence Length (ms)",
|
235 |
+
visible=False
|
236 |
+
)
|
237 |
+
silence_thresh = gr.Slider(
|
238 |
+
minimum=-70,
|
239 |
+
maximum=-30,
|
240 |
+
value=-50,
|
241 |
+
step=5,
|
242 |
+
label="Silence Threshold (dB)",
|
243 |
+
visible=False
|
244 |
+
)
|
245 |
+
|
246 |
+
with gr.Group():
|
247 |
+
gr.Markdown("### Chunking Settings")
|
248 |
+
gr.Markdown(" Chunking reduces the load on the model. 10min chunks work really good.")
|
249 |
+
enable_chunking = gr.Checkbox(
|
250 |
+
label="Enable Chunking",
|
251 |
+
value=False
|
252 |
+
)
|
253 |
+
chunk_duration = gr.Slider(
|
254 |
+
minimum=60,
|
255 |
+
maximum=3600,
|
256 |
+
value=600,
|
257 |
+
step=60,
|
258 |
+
label="Chunk Duration (seconds)",
|
259 |
+
visible=False
|
260 |
+
)
|
261 |
+
ffmpeg_path = gr.Textbox(
|
262 |
+
label="FFmpeg Path",
|
263 |
+
value="ffmpeg",
|
264 |
+
placeholder="Path to ffmpeg executable",
|
265 |
+
visible=False
|
266 |
+
)
|
267 |
+
|
268 |
+
with gr.Group():
|
269 |
+
gr.Markdown("### Transcription Settings")
|
270 |
+
gr.Markdown(" tiny is the fastest, but the worst quality. Large-v3-turbo is the best, but slower.")
|
271 |
+
model_size = gr.Dropdown(
|
272 |
+
choices=["tiny", "base", "small", "medium", "large", "large-v2", "large-v3", "turbo", "large-v3-turbo"],
|
273 |
+
value="large-v3-turbo",
|
274 |
+
label="Whisper Model Size"
|
275 |
+
)
|
276 |
+
language = gr.Dropdown(
|
277 |
+
choices=["de", "en", "fr", "es", "it"],
|
278 |
+
value="de",
|
279 |
+
label="Language"
|
280 |
+
)
|
281 |
+
|
282 |
+
process_btn = gr.Button("Process", variant="primary")
|
283 |
+
delete_btn = gr.Button("Delete Everything", variant="stop")
|
284 |
+
|
285 |
+
with gr.Column():
|
286 |
+
full_transcription = gr.Textbox(label="Full Transcription", lines=15)
|
287 |
+
segmented_transcription = gr.Textbox(label="Segmented Transcription", lines=15)
|
288 |
+
download_output = gr.File(label="Download Processed Files and Transcripts (ZIP)")
|
289 |
+
|
290 |
+
def update_silence_controls(remove_silence):
|
291 |
+
return {
|
292 |
+
min_silence_len: gr.update(visible=remove_silence),
|
293 |
+
silence_thresh: gr.update(visible=remove_silence),
|
294 |
+
full_transcription: gr.update(value=""),
|
295 |
+
segmented_transcription: gr.update(value=""),
|
296 |
+
download_output: gr.update(value=None)
|
297 |
+
}
|
298 |
+
|
299 |
+
def update_chunking_controls(enable_chunking):
|
300 |
+
return {
|
301 |
+
chunk_duration: gr.update(visible=enable_chunking),
|
302 |
+
ffmpeg_path: gr.update(visible=enable_chunking),
|
303 |
+
full_transcription: gr.update(value=""),
|
304 |
+
segmented_transcription: gr.update(value=""),
|
305 |
+
download_output: gr.update(value=None)
|
306 |
+
}
|
307 |
+
|
308 |
+
remove_silence.change(
|
309 |
+
fn=update_silence_controls,
|
310 |
+
inputs=[remove_silence],
|
311 |
+
outputs=[
|
312 |
+
min_silence_len,
|
313 |
+
silence_thresh,
|
314 |
+
full_transcription,
|
315 |
+
segmented_transcription,
|
316 |
+
download_output
|
317 |
+
]
|
318 |
+
)
|
319 |
+
|
320 |
+
enable_chunking.change(
|
321 |
+
fn=update_chunking_controls,
|
322 |
+
inputs=[enable_chunking],
|
323 |
+
outputs=[
|
324 |
+
chunk_duration,
|
325 |
+
ffmpeg_path,
|
326 |
+
full_transcription,
|
327 |
+
segmented_transcription,
|
328 |
+
download_output
|
329 |
+
]
|
330 |
+
)
|
331 |
+
|
332 |
+
process_btn.click(
|
333 |
+
fn=process_audio,
|
334 |
+
inputs=[
|
335 |
+
audio_input,
|
336 |
+
remove_silence,
|
337 |
+
min_silence_len,
|
338 |
+
silence_thresh,
|
339 |
+
enable_chunking,
|
340 |
+
chunk_duration,
|
341 |
+
ffmpeg_path,
|
342 |
+
model_size,
|
343 |
+
language,
|
344 |
+
],
|
345 |
+
outputs=[
|
346 |
+
full_transcription,
|
347 |
+
segmented_transcription,
|
348 |
+
download_output,
|
349 |
+
]
|
350 |
+
)
|
351 |
+
|
352 |
+
# Add cleanup function
|
353 |
+
def cleanup_files():
|
354 |
+
try:
|
355 |
+
# Clean up temp directories
|
356 |
+
temp_dirs = [d for d in os.listdir('.') if d.startswith('temp_processing')]
|
357 |
+
for temp_dir in temp_dirs:
|
358 |
+
if os.path.exists(temp_dir):
|
359 |
+
for file in os.listdir(temp_dir):
|
360 |
+
file_path = os.path.join(temp_dir, file)
|
361 |
+
if os.path.isfile(file_path):
|
362 |
+
os.remove(file_path)
|
363 |
+
os.rmdir(temp_dir)
|
364 |
+
|
365 |
+
# Clean up ZIP files
|
366 |
+
zip_files = [f for f in os.listdir('.') if f.startswith('processed_files_and_transcripts_')]
|
367 |
+
for zip_file in zip_files:
|
368 |
+
if os.path.exists(zip_file):
|
369 |
+
os.remove(zip_file)
|
370 |
+
|
371 |
+
# Clean up transcript files
|
372 |
+
transcript_files = [f for f in os.listdir('.') if f.startswith('transcript_')]
|
373 |
+
for transcript_file in transcript_files:
|
374 |
+
if os.path.exists(transcript_file):
|
375 |
+
os.remove(transcript_file)
|
376 |
+
|
377 |
+
# Return updates for all output fields
|
378 |
+
return {
|
379 |
+
full_transcription: gr.update(value="All temporary files have been deleted."),
|
380 |
+
segmented_transcription: gr.update(value=""),
|
381 |
+
download_output: gr.update(value=None)
|
382 |
+
}
|
383 |
+
except Exception as e:
|
384 |
+
return {
|
385 |
+
full_transcription: gr.update(value=f"Error during cleanup: {str(e)}"),
|
386 |
+
segmented_transcription: gr.update(value=""),
|
387 |
+
download_output: gr.update(value=None)
|
388 |
+
}
|
389 |
+
|
390 |
+
# Update the delete button click handler
|
391 |
+
delete_btn.click(
|
392 |
+
fn=cleanup_files,
|
393 |
+
inputs=[],
|
394 |
+
outputs=[
|
395 |
+
full_transcription,
|
396 |
+
segmented_transcription,
|
397 |
+
download_output
|
398 |
+
]
|
399 |
+
)
|
400 |
+
|
401 |
+
return app
|
402 |
+
|
403 |
+
if __name__ == "__main__":
|
404 |
+
app = create_interface()
|
405 |
+
app.launch(share=False)
|