Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,8 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
import torch.nn as nn
|
4 |
from torchvision import transforms, models
|
5 |
from PIL import Image
|
6 |
|
7 |
-
# Define the model class
|
8 |
class CustomEfficientNet(nn.Module):
|
9 |
def __init__(self, num_classes, num_layers, neurons_per_layer):
|
10 |
super(CustomEfficientNet, self).__init__()
|
@@ -29,7 +27,6 @@ class CustomEfficientNet(nn.Module):
|
|
29 |
x = self.custom_classifier(x)
|
30 |
return x
|
31 |
|
32 |
-
# Function to create and load the model
|
33 |
def create_model(num_classes, num_layers, neurons_per_layer):
|
34 |
model = CustomEfficientNet(num_classes, num_layers, neurons_per_layer)
|
35 |
return model
|
@@ -64,7 +61,6 @@ class_names = ['Coeur 1', 'Coeur 10', 'Coeur 2', 'Coeur 3', 'Coeur 4', 'Coeur 5'
|
|
64 |
'Trefle Roi', 'Trefle Valet', 'carreau 1', 'carreau 10', 'carreau 2', 'carreau 3', 'carreau 4', 'carreau 5',
|
65 |
'carreau 6', 'carreau 7', 'carreau 8', 'carreau 9', 'carreau Dame', 'carreau Roi', 'carreau Valet']
|
66 |
|
67 |
-
# Define the prediction function
|
68 |
def predict(image):
|
69 |
image = transform(image).unsqueeze(0)
|
70 |
with torch.no_grad():
|
@@ -72,21 +68,12 @@ def predict(image):
|
|
72 |
_, predicted = torch.max(outputs, 1)
|
73 |
return class_names[predicted[0]]
|
74 |
|
75 |
-
# Example images
|
76 |
-
examples = [
|
77 |
-
['trefledame.JPG'],
|
78 |
-
['coeurroi.jpg'],
|
79 |
-
['coeur3.jpg']
|
80 |
-
]
|
81 |
-
|
82 |
# Create the Gradio interface
|
83 |
iface = gr.Interface(
|
84 |
fn=predict,
|
85 |
inputs=gr.Image(type="pil"),
|
86 |
outputs="label",
|
87 |
-
description="Upload an image to classify"
|
88 |
-
examples=examples
|
89 |
)
|
90 |
|
91 |
-
|
92 |
-
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
|
|
3 |
from torchvision import transforms, models
|
4 |
from PIL import Image
|
5 |
|
|
|
6 |
class CustomEfficientNet(nn.Module):
|
7 |
def __init__(self, num_classes, num_layers, neurons_per_layer):
|
8 |
super(CustomEfficientNet, self).__init__()
|
|
|
27 |
x = self.custom_classifier(x)
|
28 |
return x
|
29 |
|
|
|
30 |
def create_model(num_classes, num_layers, neurons_per_layer):
|
31 |
model = CustomEfficientNet(num_classes, num_layers, neurons_per_layer)
|
32 |
return model
|
|
|
61 |
'Trefle Roi', 'Trefle Valet', 'carreau 1', 'carreau 10', 'carreau 2', 'carreau 3', 'carreau 4', 'carreau 5',
|
62 |
'carreau 6', 'carreau 7', 'carreau 8', 'carreau 9', 'carreau Dame', 'carreau Roi', 'carreau Valet']
|
63 |
|
|
|
64 |
def predict(image):
|
65 |
image = transform(image).unsqueeze(0)
|
66 |
with torch.no_grad():
|
|
|
68 |
_, predicted = torch.max(outputs, 1)
|
69 |
return class_names[predicted[0]]
|
70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
# Create the Gradio interface
|
72 |
iface = gr.Interface(
|
73 |
fn=predict,
|
74 |
inputs=gr.Image(type="pil"),
|
75 |
outputs="label",
|
76 |
+
description="Upload an image to classify"
|
|
|
77 |
)
|
78 |
|
79 |
+
iface.launch()
|
|