File size: 1,619 Bytes
59800d0
13976cf
 
 
 
 
 
 
 
59800d0
13976cf
 
 
59800d0
13976cf
59800d0
 
 
 
 
13976cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
---
license: mit
title: Customer Purchase Prediction
sdk: gradio
emoji: πŸš€
colorFrom: blue
colorTo: green
short_description: Neural network demo for customer purchase prediction
---
title: Customer Purchase Prediction
emoji: πŸ›’
colorFrom: blue
colorTo: green
sdk: gradio
sdk_version: 4.0.0
app_file: app.py
pinned: false
license: mit
---

# Customer Purchase Prediction Neural Network

An interactive demo of a neural network that predicts customer purchase behavior based on website engagement metrics.

## 🎯 Features

- **Interactive Predictions**: Test different customer scenarios in real-time
- **Visual Analytics**: Beautiful charts and visualizations
- **Model Performance**: Comprehensive evaluation metrics
- **Customer Segmentation**: Analyze different user types

## 🧠 Model Details

- **Architecture**: Multi-layer Neural Network (32 β†’ 16 β†’ 8 neurons)
- **Features**: Visit Duration, Pages Visited
- **Framework**: scikit-learn MLPClassifier
- **Performance**: ~66% accuracy, 0.57 AUC

## πŸš€ Try It Out

1. **Adjust the sliders** to set customer behavior parameters
2. **View real-time predictions** with probability scores
3. **Explore data visualizations** to understand patterns
4. **Check model performance** metrics and analysis

## πŸ’Ό Business Applications

- E-commerce optimization
- Marketing campaign targeting
- User experience enhancement
- Revenue forecasting

## πŸ”— Links

- **Source Code**: [GitHub Repository](https://github.com/drbinna/customer-purchase-prediction)
- **Developer**: [@drbinna](https://github.com/drbinna)

Built with ❀️ using Gradio and scikit-learn