File size: 1,619 Bytes
59800d0 13976cf 59800d0 13976cf 59800d0 13976cf 59800d0 13976cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
---
license: mit
title: Customer Purchase Prediction
sdk: gradio
emoji: π
colorFrom: blue
colorTo: green
short_description: Neural network demo for customer purchase prediction
---
title: Customer Purchase Prediction
emoji: π
colorFrom: blue
colorTo: green
sdk: gradio
sdk_version: 4.0.0
app_file: app.py
pinned: false
license: mit
---
# Customer Purchase Prediction Neural Network
An interactive demo of a neural network that predicts customer purchase behavior based on website engagement metrics.
## π― Features
- **Interactive Predictions**: Test different customer scenarios in real-time
- **Visual Analytics**: Beautiful charts and visualizations
- **Model Performance**: Comprehensive evaluation metrics
- **Customer Segmentation**: Analyze different user types
## π§ Model Details
- **Architecture**: Multi-layer Neural Network (32 β 16 β 8 neurons)
- **Features**: Visit Duration, Pages Visited
- **Framework**: scikit-learn MLPClassifier
- **Performance**: ~66% accuracy, 0.57 AUC
## π Try It Out
1. **Adjust the sliders** to set customer behavior parameters
2. **View real-time predictions** with probability scores
3. **Explore data visualizations** to understand patterns
4. **Check model performance** metrics and analysis
## πΌ Business Applications
- E-commerce optimization
- Marketing campaign targeting
- User experience enhancement
- Revenue forecasting
## π Links
- **Source Code**: [GitHub Repository](https://github.com/drbinna/customer-purchase-prediction)
- **Developer**: [@drbinna](https://github.com/drbinna)
Built with β€οΈ using Gradio and scikit-learn |