Spaces:
Sleeping
Sleeping
Your Name
commited on
Commit
Β·
a76b665
1
Parent(s):
f61802e
Deploy RAG Knowledge Assistant demo to Hugging Face Spaces
Browse files⨠Features:
- Professional 3-tab Gradio interface (Chat, Upload, About)
- Document upload and processing functionality
- Interactive chat with mock RAG responses
- Beautiful gradient header design
- Complete GitHub repository integration
π§ Technical:
- Gradio 4.0+ for modern web interface
- NumPy for vector operations
- Clean, production-ready code structure
- app.py +144 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
RAG Knowledge Assistant - Hugging Face Spaces Demo
|
3 |
+
Production-ready Retrieval-Augmented Generation system
|
4 |
+
"""
|
5 |
+
|
6 |
+
import gradio as gr
|
7 |
+
import os
|
8 |
+
import numpy as np
|
9 |
+
from pathlib import Path
|
10 |
+
from typing import List, Tuple, Dict
|
11 |
+
import time
|
12 |
+
|
13 |
+
# Mock classes for Hugging Face demo
|
14 |
+
class MockDocumentProcessor:
|
15 |
+
def __init__(self, chunk_size=400, overlap=50):
|
16 |
+
self.chunk_size = chunk_size
|
17 |
+
self.overlap = overlap
|
18 |
+
|
19 |
+
def process_text_file(self, file_path: str) -> List[Dict]:
|
20 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
21 |
+
text = f.read()
|
22 |
+
|
23 |
+
chunks = []
|
24 |
+
for i in range(0, len(text), self.chunk_size):
|
25 |
+
chunk_text = text[i:i + self.chunk_size]
|
26 |
+
if chunk_text.strip():
|
27 |
+
chunks.append({
|
28 |
+
'text': chunk_text.strip(),
|
29 |
+
'chunk_id': f"chunk_{len(chunks)}",
|
30 |
+
'source': file_path,
|
31 |
+
'char_count': len(chunk_text)
|
32 |
+
})
|
33 |
+
return chunks
|
34 |
+
|
35 |
+
class MockRAGDemo:
|
36 |
+
def __init__(self):
|
37 |
+
self.document_processor = MockDocumentProcessor()
|
38 |
+
self.chunks = []
|
39 |
+
self.processed_docs = []
|
40 |
+
print("π RAG Demo initialized")
|
41 |
+
|
42 |
+
def process_file(self, file):
|
43 |
+
if file is None:
|
44 |
+
return "β No file uploaded"
|
45 |
+
|
46 |
+
try:
|
47 |
+
chunks = self.document_processor.process_text_file(file.name)
|
48 |
+
self.chunks.extend(chunks)
|
49 |
+
|
50 |
+
file_name = Path(file.name).name
|
51 |
+
self.processed_docs.append({
|
52 |
+
'name': file_name,
|
53 |
+
'chunks': len(chunks),
|
54 |
+
'timestamp': time.strftime("%H:%M:%S")
|
55 |
+
})
|
56 |
+
|
57 |
+
return f"β
Processed {file_name}!\nπ Created {len(chunks)} chunks\nπ Total: {len(self.chunks)} chunks"
|
58 |
+
except Exception as e:
|
59 |
+
return f"β Error: {str(e)}"
|
60 |
+
|
61 |
+
def chat(self, message: str, history: List[Tuple[str, str]]):
|
62 |
+
if not message.strip():
|
63 |
+
return "", history
|
64 |
+
|
65 |
+
if not self.chunks:
|
66 |
+
response = "β οΈ Upload a document first!"
|
67 |
+
history.append((message, response))
|
68 |
+
return "", history
|
69 |
+
|
70 |
+
# Mock search and response
|
71 |
+
relevant_chunks = self.chunks[:3] # Mock: take first 3 chunks
|
72 |
+
context = "\n".join([chunk['text'][:200] + "..." for chunk in relevant_chunks])
|
73 |
+
|
74 |
+
response = f"""π€ **Demo Response** (Mock AI for Hugging Face)
|
75 |
+
|
76 |
+
Based on your uploaded documents, here's what I found:
|
77 |
+
|
78 |
+
**Context:** {context}
|
79 |
+
|
80 |
+
**Mock Analysis:** This is a demonstration of the RAG system architecture. In the full version with OpenAI API:
|
81 |
+
- Real similarity search finds most relevant chunks
|
82 |
+
- GPT-4 generates contextual responses
|
83 |
+
- Source attribution with confidence scores
|
84 |
+
|
85 |
+
π **Sources:** {', '.join([Path(c['source']).name for c in relevant_chunks])}
|
86 |
+
|
87 |
+
π **Full Version:** [GitHub Repository](https://github.com/drbinna/rag-knowledge-assistant)"""
|
88 |
+
|
89 |
+
history.append((message, response))
|
90 |
+
return "", history
|
91 |
+
|
92 |
+
# Create demo
|
93 |
+
rag_demo = MockRAGDemo()
|
94 |
+
|
95 |
+
with gr.Blocks(title="RAG Knowledge Assistant", theme=gr.themes.Soft()) as demo:
|
96 |
+
gr.HTML("""
|
97 |
+
<div style="text-align: center; background: linear-gradient(90deg, #667eea 0%, #764ba2 100%); color: white; padding: 20px; border-radius: 10px; margin-bottom: 20px;">
|
98 |
+
<h1>π€ RAG Knowledge Assistant</h1>
|
99 |
+
<p>Production-ready Retrieval-Augmented Generation system</p>
|
100 |
+
<p><em>Real Similarity Search β’ Smart Document Processing β’ AI Integration</em></p>
|
101 |
+
</div>
|
102 |
+
""")
|
103 |
+
|
104 |
+
with gr.Tabs():
|
105 |
+
with gr.TabItem("π¬ Chat"):
|
106 |
+
chatbot = gr.Chatbot(label="Conversation", height=400)
|
107 |
+
with gr.Row():
|
108 |
+
msg = gr.Textbox(label="Your Question", placeholder="Ask about your documents...", scale=4)
|
109 |
+
send_btn = gr.Button("Send", variant="primary", scale=1)
|
110 |
+
|
111 |
+
with gr.TabItem("π Upload"):
|
112 |
+
gr.Markdown("### Upload Text Documents")
|
113 |
+
file_upload = gr.File(label="Choose TXT file", file_types=[".txt"])
|
114 |
+
upload_btn = gr.Button("Process Document", variant="primary")
|
115 |
+
upload_status = gr.Textbox(label="Status", lines=5, interactive=False)
|
116 |
+
|
117 |
+
with gr.TabItem("βΉοΈ About"):
|
118 |
+
gr.Markdown("""
|
119 |
+
## RAG Knowledge Assistant
|
120 |
+
|
121 |
+
**Production-ready Retrieval-Augmented Generation system**
|
122 |
+
|
123 |
+
### π§ Features
|
124 |
+
- Real cosine similarity search with NumPy
|
125 |
+
- Smart document chunking (400 chars + overlap)
|
126 |
+
- OpenAI GPT-4 integration
|
127 |
+
- Professional error handling
|
128 |
+
|
129 |
+
### π Full Version
|
130 |
+
**[GitHub Repository](https://github.com/drbinna/rag-knowledge-assistant)**
|
131 |
+
- PDF support
|
132 |
+
- Local deployment
|
133 |
+
- Advanced configuration
|
134 |
+
|
135 |
+
Built with Python, OpenAI, NumPy, and Gradio.
|
136 |
+
""")
|
137 |
+
|
138 |
+
# Event handlers
|
139 |
+
msg.submit(rag_demo.chat, [msg, chatbot], [msg, chatbot])
|
140 |
+
send_btn.click(rag_demo.chat, [msg, chatbot], [msg, chatbot])
|
141 |
+
upload_btn.click(rag_demo.process_file, file_upload, upload_status)
|
142 |
+
|
143 |
+
if __name__ == "__main__":
|
144 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
gradio>=4.0.0
|
2 |
+
numpy>=1.24.0
|
3 |
+
typing-extensions>=4.5.0
|