""" RAG Knowledge Assistant - Hugging Face Spaces Demo Production-ready Retrieval-Augmented Generation system """ import gradio as gr import os import numpy as np from pathlib import Path from typing import List, Tuple, Dict import time # Mock classes for Hugging Face demo class MockDocumentProcessor: def __init__(self, chunk_size=400, overlap=50): self.chunk_size = chunk_size self.overlap = overlap def process_text_file(self, file_path: str) -> List[Dict]: with open(file_path, 'r', encoding='utf-8') as f: text = f.read() chunks = [] for i in range(0, len(text), self.chunk_size): chunk_text = text[i:i + self.chunk_size] if chunk_text.strip(): chunks.append({ 'text': chunk_text.strip(), 'chunk_id': f"chunk_{len(chunks)}", 'source': file_path, 'char_count': len(chunk_text) }) return chunks class MockRAGDemo: def __init__(self): self.document_processor = MockDocumentProcessor() self.chunks = [] self.processed_docs = [] print("š RAG Demo initialized") def process_file(self, file): if file is None: return "ā No file uploaded" try: chunks = self.document_processor.process_text_file(file.name) self.chunks.extend(chunks) file_name = Path(file.name).name self.processed_docs.append({ 'name': file_name, 'chunks': len(chunks), 'timestamp': time.strftime("%H:%M:%S") }) return f"ā Processed {file_name}!\nš Created {len(chunks)} chunks\nš Total: {len(self.chunks)} chunks" except Exception as e: return f"ā Error: {str(e)}" def chat(self, message: str, history: List[Tuple[str, str]]): if not message.strip(): return "", history if not self.chunks: response = "ā ļø Upload a document first!" history.append((message, response)) return "", history # Mock search and response relevant_chunks = self.chunks[:3] # Mock: take first 3 chunks context = "\n".join([chunk['text'][:200] + "..." for chunk in relevant_chunks]) response = f"""š¤ **Demo Response** (Mock AI for Hugging Face) Based on your uploaded documents, here's what I found: **Context:** {context} **Mock Analysis:** This is a demonstration of the RAG system architecture. In the full version with OpenAI API: - Real similarity search finds most relevant chunks - GPT-4 generates contextual responses - Source attribution with confidence scores š **Sources:** {', '.join([Path(c['source']).name for c in relevant_chunks])} š **Full Version:** [GitHub Repository](https://github.com/drbinna/rag-knowledge-assistant)""" history.append((message, response)) return "", history # Create demo rag_demo = MockRAGDemo() with gr.Blocks(title="RAG Knowledge Assistant", theme=gr.themes.Soft()) as demo: gr.HTML("""
Production-ready Retrieval-Augmented Generation system
Real Similarity Search ⢠Smart Document Processing ⢠AI Integration