Spaces:
Runtime error
Runtime error
# AUTOGENERATED! DO NOT EDIT! File to edit: app.ipynb. | |
# %% auto 0 | |
__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions'] | |
# %% app.ipynb 0 | |
import subprocess | |
import sys | |
def upgrade(package): | |
subprocess.run([sys.executable, "-m", "pip", "install", "--upgrade", package]) | |
#upgrade("gradio==3.116") | |
def install_specific_version(package, version): | |
subprocess.run([sys.executable, "-m", "pip", "install", package+version]) | |
install_specific_version("gradio==", "3.16.0") | |
import gradio as gr | |
import pandas as pd | |
from huggingface_hub import list_models | |
from diffusers import StableDiffusionPipeline | |
# %% app.ipynb 1 | |
def get_model_list(category): | |
submissions_list = list_models(filter=["dreambooth-hackathon", category], full=True) | |
spaces_pipeline_load = [submission.id for submission in submissions_list ] | |
return gr.Dropdown.update(choices=spaces_pipeline_load , value=spaces_pipeline_load[4]) | |
def get_initial_prompt(model_nm): | |
#Example - a photo of shbrcky dog | |
user_model_nm = model_nm.split('/')[-1] | |
if '-' in user_model_nm: | |
prompt = " ".join(user_model_nm.split('-')) | |
else: | |
prompt = user_model_nm | |
return gr.Textbox.update(value="a photo of " + prompt + " ") | |
def get_pipeline(model_name): #, progress=gr.Progress(track_tqdm=True)): | |
#Using diffusers pipeline to generate an image for the demo | |
#Loading Your Dreambooth model | |
pipeline = StableDiffusionPipeline.from_pretrained(model_name) # Example - ("ashiqabdulkhader/shiba-dog") or ('pharma/sugar-glider') | |
return pipeline | |
def make_demo(model_name, prompt, progress=gr.Progress(track_tqdm=True)): | |
#Using diffusers pipeline to generate an image for the demo | |
progress(0, desc="Starting...") | |
pipeline = get_pipeline(model_name) #StableDiffusionPipeline.from_pretrained(model_name) # Example - ("ashiqabdulkhader/shiba-dog") or ('pharma/sugar-glider') | |
#Generating Image from your prompt | |
image_demo = pipeline(prompt).images[0] | |
return image_demo | |
def make_clickable_model(model_name, link=None): | |
if link is None: | |
link = "https://huggingface.co/" + model_name | |
# Remove user from model name | |
return f'<a target="_blank" href="{link}">{model_name.split("/")[-1]}</a>' | |
def make_clickable_user(user_id): | |
link = "https://huggingface.co/" + user_id | |
return f'<a target="_blank" href="{link}">{user_id}</a>' | |
# %% app.ipynb 2 | |
def get_submissions(category, prompt): | |
submissions = list_models(filter=["dreambooth-hackathon", category], full=True) | |
leaderboard_models = [] | |
for submission in submissions: | |
# user, model, likes | |
user_id = submission.id.split("/")[0] | |
model_nm = submission.id.split("/")[-1] | |
if '-' in model_nm: | |
model_nm = " ".join(model_nm.split('-')) | |
#button_html = get_button() | |
leaderboard_models.append( | |
( | |
make_clickable_user(user_id), | |
make_clickable_model(submission.id, prompt), | |
submission.likes, | |
#button_html #'a photo of ' + model_nm + " " | |
) | |
) | |
df = pd.DataFrame(data=leaderboard_models, columns=["User", "Model", "Likes", ]) | |
df.sort_values(by=["Likes"], ascending=False, inplace=True) | |
df.insert(0, "Rank", list(range(1, len(df) + 1))) | |
return df | |
# %% app.ipynb 3 | |
block = gr.Blocks() | |
with block: | |
gr.Markdown( | |
"""# Gradio-powered leaderboard-evaluator for the DreamBooth Hackathon | |
Welcome to this Gradio-powered leaderboard! Select a theme and one of the dreambooth models trained by hackathon-participants, and key in your prompt as shown (eg., a photo of Shiba dog in a jungle). Note that, the image generation might take long (around 400 seconds) as it will have to load the respective model pipeline into memory. | |
<br>**If you like a model demo, click on the model name in the table below and UPVOTE the model on Huggingface hub**<br><br> | |
DreamBooth Hackathon - is an ongoing community event where participants **personalize a Stable Diffusion model** by fine-tuning it with a powerful technique called [_DreamBooth_](https://arxiv.org/abs/2208.12242). This technique allows one to implant a subject into the output domain of the model such that it can be synthesized with a _unique identifier_ (eg., shiba dog) in the prompt. | |
This competition comprises 5 _themes_ - Animals, Science, Food, Landscapes, and Wildcards. For details on how to participate, check out the hackathon's guide [here](https://github.com/huggingface/diffusion-models-class/blob/main/hackathon/README.md). | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
theme = gr.Radio(label="Pick a Theme",choices=["animal","science", "food", "landscape", "wildcard"] ) | |
model_list = gr.Dropdown(label="Pick a Dreamboooth model", choices = []) # choices= | |
with gr.Column(): | |
prompt_in = gr.Textbox(label="Type in a Prompt in front of the given text..", value="") | |
button_in = gr.Button(Value = "Generate Image") | |
image_out = gr.Image(label="Generated image with your choice of Dreambooth model") | |
with gr.Tabs(): | |
with gr.TabItem("Animal 🐨"): | |
with gr.Row(): | |
animal_data = gr.components.Dataframe( | |
type="pandas", datatype=["number", "markdown", "markdown", "number","str"], interactive = True | |
) | |
with gr.Row(): | |
data_run = gr.Button("Refresh") | |
data_run.click( | |
get_submissions, inputs=[gr.Variable("animal"), prompt_in], outputs=animal_data | |
) | |
with gr.TabItem("Science 🔬"): | |
with gr.Row(): | |
science_data = gr.components.Dataframe( | |
type="pandas", datatype=["number", "markdown", "markdown", "number", "str"], interactive = True | |
) | |
with gr.Row(): | |
data_run = gr.Button("Refresh") | |
data_run.click( | |
get_submissions, inputs=[gr.Variable("science"), prompt_in], outputs=science_data | |
) | |
with gr.TabItem("Food 🍔"): | |
with gr.Row(): | |
food_data = gr.components.Dataframe( | |
type="pandas", datatype=["number", "markdown", "markdown", "number", "str"], interactive = True | |
) | |
with gr.Row(): | |
data_run = gr.Button("Refresh") | |
data_run.click( | |
get_submissions, inputs=[gr.Variable("food"), prompt_in], outputs=food_data | |
) | |
with gr.TabItem("Landscape 🏔"): | |
with gr.Row(): | |
landscape_data = gr.components.Dataframe( | |
type="pandas", datatype=["number", "markdown", "markdown", "number", "str"], interactive = True | |
) | |
with gr.Row(): | |
data_run = gr.Button("Refresh") | |
data_run.click( | |
get_submissions, | |
inputs=[gr.Variable("landscape"),prompt_in], | |
outputs=landscape_data, | |
) | |
with gr.TabItem("Wilcard 🔥"): | |
with gr.Row(): | |
wildcard_data = gr.components.Dataframe( | |
type="pandas", datatype=["number", "markdown", "markdown", "number", "str"], interactive = True | |
) | |
with gr.Row(): | |
data_run = gr.Button("Refresh") | |
data_run.click( | |
get_submissions, | |
inputs=[gr.Variable("wildcard"),prompt_in], | |
outputs=wildcard_data, | |
) | |
theme.change(get_model_list, theme, model_list ) | |
model_list.change(get_initial_prompt, model_list, prompt_in ) | |
button_in.click(make_demo, [model_list, prompt_in], image_out) | |
block.load(get_submissions, inputs=[gr.Variable("animal"), prompt_in], outputs=animal_data) | |
block.load(get_submissions, inputs=[gr.Variable("science"), prompt_in], outputs=science_data) | |
block.load(get_submissions, inputs=[gr.Variable("food"), prompt_in], outputs=food_data) | |
block.load(get_submissions, inputs=[gr.Variable("landscape"), prompt_in], outputs=landscape_data) | |
block.load(get_submissions, inputs=[gr.Variable("wildcard"), prompt_in], outputs=wildcard_data) | |
block.queue(concurrency_count=3) | |
block.launch() | |