Spaces:
dreroc
/
Running on Zero

File size: 13,516 Bytes
bc49ed6
 
 
 
 
 
 
 
 
 
f615fc2
bc49ed6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db62905
bc49ed6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
306bda8
bc49ed6
 
 
 
 
 
 
 
 
1e6ce87
db62905
bc49ed6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
306bda8
bc49ed6
 
db62905
5f34f32
bc49ed6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
306bda8
bc49ed6
 
 
 
 
 
 
 
 
 
 
 
 
 
db62905
5f34f32
bc49ed6
 
 
 
 
 
 
 
 
 
8f7a765
 
bc49ed6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f7a765
bc49ed6
 
 
8f7a765
bc49ed6
 
 
 
 
 
8f7a765
bc49ed6
 
 
 
 
 
 
 
 
8f7a765
bc49ed6
 
8f7a765
bc49ed6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f7a765
bc49ed6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
306bda8
bc49ed6
 
db62905
5f34f32
bc49ed6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
import torch
import numpy as np
from PIL import Image
from einops import rearrange
from mmengine.config import Config
from xtuner.registry import BUILDER
from torch.nn.utils.rnn import pad_sequence
import os
import json
from mmengine.logging import print_log
import spaces

def crop2square(pil_img):
    width, height = pil_img.width, pil_img.height
    short = min(width, height)
    left = (width - short) // 2
    upper = (height - short) // 2
    return pil_img.crop((left, upper, left + short, upper + short))

def preprocess_image(image: Image.Image, image_size: int, dtype: torch.dtype):
    """将 PIL Image 缩放(使用邻近插值)、归一化并返回 [1, C, H, W] Tensor。"""
    # if image.width != image_size or image.height != image_size:
    #     # 1) 裁剪中央正方
    #     img = crop2square(image)
    #     img = img.resize((image_size, image_size))
    # else:
    #     img = image

    img = crop2square(image)
    img = img.resize((image_size, image_size))

    arr = np.asarray(img).astype(np.float32) / 255.0
    arr = 2 * arr - 1
    tensor = torch.from_numpy(arr).to(dtype=dtype)
    return rearrange(tensor, "h w c -> 1 c h w")

def expand2square(pil_img, target_size=1024, background_color=(127, 127, 127)):
    """
    Resize an image to fit within a square of size target_size x target_size,
    padding with background_color to make it exactly square.

    Args:
        pil_img (PIL.Image.Image): The input image.
        target_size (int): The desired square resolution.
        background_color (tuple): RGB color to pad with.

    Returns:
        PIL.Image.Image: The resized and padded square image.
    """
    original_width, original_height = pil_img.size
    scale = min(target_size / original_width, target_size / original_height)
    new_width = int(original_width * scale)
    new_height = int(original_height * scale)

    # Resize image
    resized_img = pil_img.resize((new_width, new_height), resample=Image.Resampling.BICUBIC)

    # Create new square background
    new_img = Image.new(pil_img.mode, (target_size, target_size), background_color)
    paste_position = ((target_size - new_width) // 2, (target_size - new_height) // 2)
    new_img.paste(resized_img, paste_position)

    return new_img

def _print_load_result(module_name, missing, unexpected):
    print_log(
        f"[INFO] Loaded {module_name}. missing={len(missing)}, unexpected={len(unexpected)}"
    )


class Inferencer:
    def __init__(
        self, config_file, model_path, image_size=1024, cfg_prompt="Generate an image."
    ):
        self.config_file = config_file
        self.cfg = Config.fromfile(self.config_file)

        self.model_path = model_path
        self.device = "cuda"
        self.image_size = image_size
        self.image_shape = (image_size // 16, image_size // 16)
        self.cfg_prompt = cfg_prompt
        self.model = None

    def init_model(self):
        # config = Config.fromfile(self.config_file)
        # model = BUILDER.build(config.model)
        
        model = BUILDER.build(self.cfg.model)

        if os.path.isdir(self.model_path):
            index_path = os.path.join(self.model_path, "pytorch_model.bin.index.json")
            print_log(
                f"[INFO] Loading sharded Harmon checkpoint from: {self.model_path}"
            )
            state_dict = {}
            with open(index_path, "r") as f:
                index = json.load(f)
            for shard in sorted(set(index["weight_map"].values())):
                shard_path = os.path.join(self.model_path, shard)
                print_log(f"[INFO] Loading shard: {shard_path}")
                state_dict.update(torch.load(shard_path, map_location=self.device))
        else:
            print_log(f"[INFO] Loading full Harmon checkpoint from: {self.model_path}")
            state_dict = torch.load(self.model_path, map_location=self.device)

        m, u = model.load_state_dict(state_dict, strict=False)
        _print_load_result("Harmon", m, u)

        # 载入siglip2 weight
        # siglip_proj_path = "/mnt/data_vlm/wangxiaokun/Unified/Harmon_Siglip/Model/400w/stage1/9000/pytorch_model.bin"
        # sl_state = torch.load(
        #     siglip_proj_path, map_location=self.device, weights_only=False
        # )
        # if isinstance(sl_state, dict) and "model" in sl_state:
        #     sl_state = sl_state["model"]
        # m, u = model.siglip2_proj.load_state_dict(sl_state, strict=False)
        # _print_load_result("SigLIP2", m, u)

        model = model.to(self.device, dtype=model.dtype)
        model.eval()
        return model

    @spaces.GPU(duration=120)
    def gen_image(
        self,
        raw_prompt,
        images_to_generate=1,
        cfg=3.0,
        num_iter=64,
        cfg_schedule="constant",
        temperature=1.0,
    ):
        if not self.model:
            self.model = self.init_model()
        prompt = self.model.prompt_template["INSTRUCTION"].format(
            input=f"Generate an image: {raw_prompt.strip()}."
        )
        prompts = [prompt] * images_to_generate
        if cfg != 1.0:
            prompts += [
                self.model.prompt_template["INSTRUCTION"].format(input=self.cfg_prompt)
            ] * images_to_generate

        inputs = self.model.tokenizer(
            prompts, add_special_tokens=True, return_tensors="pt", padding=True
        ).to(self.device)
        
        print(prompts)

        images = self.model.sample(
            **inputs,
            num_iter=num_iter,
            cfg=cfg,
            cfg_schedule=cfg_schedule,
            temperature=temperature,
            progress=False,
            image_shape=self.image_shape,
        )
        images = rearrange(images, "(n b) c h w -> b n h w c", n=images_to_generate)
        images = (
            torch.clamp(127.5 * images + 128.0, 0, 255)
            .to("cpu", dtype=torch.uint8)
            .numpy()
        )

        return [Image.fromarray(img) for img in images[0]]

    @spaces.GPU(duration=120)
    def query_image(self, img: Image.Image, prompt=""):
        model = self.model
        if not model:
            model = self.init_model()
        tokenizer = model.tokenizer
        special_tokens_dict = {"additional_special_tokens": ["<image>"]}
        tokenizer.add_special_tokens(special_tokens_dict)
        image_token_idx = tokenizer.encode("<image>", add_special_tokens=False)[-1]

        # preprocess image
        image = img.convert("RGB")
        image = expand2square(image)
        image = torch.from_numpy(np.array(image)).to(
            dtype=model.dtype, device=self.device
        )
        image = rearrange(image, "h w c -> c h w")[None]
        image = 2 * (image / 255) - 1

        # prepare prompt
        full_prompt = model.prompt_template["INSTRUCTION"].format(
            input="<image>\n" + prompt
        )
        image_length = (self.image_size // 16) ** 2 + 64
        full_prompt = full_prompt.replace("<image>", "<image>" * image_length)
        input_ids = tokenizer.encode(
            full_prompt, add_special_tokens=True, return_tensors="pt"
        ).to(self.device)

        # extract image embedding
        with torch.no_grad():
            _, z_enc = model.extract_visual_feature(model.encode(image))
        inputs_embeds = z_enc.new_zeros(*input_ids.shape, model.llm.config.hidden_size)
        inputs_embeds[input_ids == image_token_idx] = z_enc.flatten(0, 1)
        inputs_embeds[input_ids != image_token_idx] = model.llm.get_input_embeddings()(
            input_ids[input_ids != image_token_idx]
        )

        # generate text
        with torch.no_grad():
            output = model.llm.generate(
                inputs_embeds=inputs_embeds,
                use_cache=True,
                do_sample=False,
                max_new_tokens=4096,
                eos_token_id=tokenizer.eos_token_id,
                pad_token_id=tokenizer.pad_token_id or tokenizer.eos_token_id,
            )
        # print(tokenizer.decode(output[0]))
        return tokenizer.decode(output[0])

    @spaces.GPU(duration=120)
    def edit_image(
        self, 
        source_image: Image.Image, 
        prompt: str, 
        num_iter: int = 48, 
        cfg: float = 3.0,
        cfg_prompt: str = "Repeat this image.",
        cfg_schedule: str = "constant",
        temperature: float = 0.85,
        grid_size: int = 1
    ) -> Image.Image:
        """Edit single image based on prompt."""

        model = self.model
        if not model:
            model = self.init_model()
        tokenizer = model.tokenizer
        special_tokens_dict = {"additional_special_tokens": ["<image>"]}
        tokenizer.add_special_tokens(special_tokens_dict)
        image_token_idx = tokenizer.encode("<image>", add_special_tokens=False)[-1]
        device = "cuda"
        # 1) Preprocess source image
        img_tensor = preprocess_image(source_image, self.image_size, model.dtype).to(device)

        # 2) Encode image and extract features
        with torch.no_grad():
            x_enc = model.encode(img_tensor)
            x_con, z_enc = model.extract_visual_feature(x_enc)

        # 3) Prepare text prompts
        m = n = self.image_size // 16
        image_length = m * n + 64
        
        if hasattr(self.cfg.model, 'prompt_template'):
            prompt_str = self.cfg.model.prompt_template['INSTRUCTION'].format(
                input="<image>\n" + prompt.strip()
            )
            cfg_prompt_str = self.cfg.model.prompt_template['INSTRUCTION'].format(
                input="<image>\n" + cfg_prompt.strip()
            )
        else:
            prompt_str = f"<image>\n{prompt.strip()}"
            cfg_prompt_str = f"<image>\n{cfg_prompt.strip()}"
        
        # Replace <image> token with multiple tokens
        prompt_str = prompt_str.replace('<image>', '<image>' * image_length)
        cfg_prompt_str = cfg_prompt_str.replace('<image>', '<image>' * image_length)
        
        # 4) Tokenize and prepare inputs
        input_ids = model.tokenizer.encode(
            prompt_str, add_special_tokens=True, return_tensors='pt')[0].cuda()

        if cfg != 1.0:
            null_input_ids = model.tokenizer.encode(
                cfg_prompt_str, add_special_tokens=True, return_tensors='pt')[0].cuda()
            attention_mask = pad_sequence(
                [torch.ones_like(input_ids), torch.ones_like(null_input_ids)],
                batch_first=True, padding_value=0).to(torch.bool)
            input_ids = pad_sequence(
                [input_ids, null_input_ids],
                batch_first=True, padding_value=model.tokenizer.eos_token_id)
        else:
            input_ids = input_ids[None]
            attention_mask = torch.ones_like(input_ids).to(torch.bool)
        
        # 5) Prepare embeddings
        if cfg != 1.0:
            z_enc = torch.cat([z_enc, z_enc], dim=0)
            x_con = torch.cat([x_con, x_con], dim=0)
        
        inputs_embeds = z_enc.new_zeros(*input_ids.shape, model.llm.config.hidden_size)
        #debug:目前这里报错
        inputs_embeds[input_ids == image_token_idx] = z_enc.flatten(0, 1)
        inputs_embeds[input_ids != image_token_idx] = model.llm.get_input_embeddings()(
            input_ids[input_ids != image_token_idx]
        )
        
        # 6) Repeat for grid sampling
        bsz = grid_size ** 2
        x_con = torch.cat([x_con] * bsz)
        if cfg != 1.0:
            inputs_embeds = torch.cat([
                inputs_embeds[:1].expand(bsz, -1, -1),
                inputs_embeds[1:].expand(bsz, -1, -1),
            ])
            attention_mask = torch.cat([
                attention_mask[:1].expand(bsz, -1),
                attention_mask[1:].expand(bsz, -1),
            ])
        else:
            inputs_embeds = inputs_embeds.expand(bsz, -1, -1)
            attention_mask = attention_mask.expand(bsz, -1)
        
        # 7) Sampling
        samples = model.sample(
            inputs_embeds=inputs_embeds,
            attention_mask=attention_mask,
            num_iter=num_iter,
            cfg=cfg,
            cfg_schedule=cfg_schedule,
            temperature=temperature,
            progress=False,
            image_shape=(m, n),
            x_con=x_con
        )

        # 9) Convert to PIL Image
        samples = rearrange(samples, '(m n) c h w -> (m h) (n w) c', m=grid_size, n=grid_size)
        samples = torch.clamp(127.5 * samples + 128.0, 0, 255)
        out = samples.to("cpu", torch.uint8).numpy()

        return [ Image.fromarray(out) ]
    
    @spaces.GPU(duration=120)
    def query_text(self, prompt=""):
        model = self.model
        if not model:
            model = self.init_model()
        tokenizer = model.tokenizer

        # 构造文本 prompt
        full_prompt = model.prompt_template["INSTRUCTION"].format(input=prompt)
        input_ids = tokenizer.encode(
            full_prompt, add_special_tokens=True, return_tensors="pt"
        ).to(self.device)

        # 生成回复
        with torch.no_grad():
            output = model.llm.generate(
                input_ids=input_ids,
                use_cache=True,
                do_sample=True,
                max_new_tokens=1024,
                eos_token_id=tokenizer.eos_token_id,
                pad_token_id=tokenizer.pad_token_id or tokenizer.eos_token_id,
            )

        res = tokenizer.decode(output[0], skip_special_tokens=True)
        # print(f"Query Text Output: {res}")
        return res