Spaces:
dreroc
/
Running on Zero

File size: 23,605 Bytes
ea88892
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
from torch.utils.data import Dataset
from PIL import Image
import os
import json
import random
import torch
import numpy as np
from einops import rearrange
from xtuner.registry import BUILDER
from mmengine.registry import DATASETS
from src.datasets.utils import crop2square
from glob import glob
from typing import List, Dict, Any, Optional
import mmap
import struct
from src.datasets.utils import crop2square, encode_fn
from xtuner.utils import DEFAULT_IMAGE_TOKEN


@BUILDER.register_module()
class Text2ImageDataset(Dataset):
    def __init__(self,
                 data_path,
                 local_folder,
                 image_size,
                 unconditional=0.1,
                 tokenizer=None,
                 prompt_template=None,
                 max_length=1024,
                 crop_image=True,
                 cap_source='caption',
                 ):
        super().__init__()
        self.data_path = data_path
        self._load_data(data_path)
        self.unconditional = unconditional
        self.local_folder = local_folder
        self.cap_source = cap_source
        self.image_size = image_size
        self.tokenizer = BUILDER.build(tokenizer)

        self.prompt_template = prompt_template
        self.max_length = max_length
        self.crop_image = crop_image
        self.metainfo = {'task': 'unified'}
        self.tokenizer.add_tokens(["<image>"], special_tokens=True)



    def _load_data(self, data_path):
        with open(data_path, 'r') as f:
            self.data_list = json.load(f)

        print(f"Load {len(self.data_list)} data samples from {data_path}", flush=True)
    
    def full_init(self):
        """Dummy full_init to be compatible with MMEngine ConcatDataset."""
        return
    

    def __len__(self):
        return len(self.data_list)

    def _read_image(self, image_file):
        image = Image.open(os.path.join(self.local_folder, image_file))
        assert image.width > 8 and image.height > 8, f"Image: {image.size}"
        assert image.width / image.height > 0.1, f"Image: {image.size}"
        assert image.width / image.height < 10, f"Image: {image.size}"
        return image

    def _process_text(self, text):
        if random.uniform(0, 1) < self.unconditional:
            prompt = "Generate an image."
        else:
            prompt = f"Generate an image: {text.strip()}"
        prompt = self.prompt_template['INSTRUCTION'].format(input=prompt)
        input_ids = self.tokenizer.encode(prompt, add_special_tokens=True, return_tensors='pt')[0]

        return dict(input_ids=input_ids[:self.max_length])

    def _process_image(self, image):
        data = dict()

        if self.crop_image:
            image = crop2square(image)
        else:
            target_size = max(image.size)
            image = image.resize(size=(target_size, target_size))

        image = image.resize(size=(self.image_size, self.image_size))
        pixel_values = torch.from_numpy(np.array(image)).float()
        pixel_values = pixel_values / 255
        pixel_values = 2 * pixel_values - 1
        pixel_values = rearrange(pixel_values, 'h w c -> c h w')

        data.update(pixel_values=pixel_values)

        return data

    def _retry(self):
        return self.__getitem__(random.choice(range(self.__len__())))

    def __getitem__(self, idx):
        try:
            data_sample = self.data_list[idx]
            image = self._read_image(data_sample['image']).convert('RGB')

            caption = data_sample[self.cap_source]
            data = self._process_image(image)
            data.update(self._process_text(caption))
            data.update(type='text2image')

            return data

        except Exception as e:
            print(f"Error when reading {self.data_path}:{self.data_list[idx]}: {e}", flush=True)
            return self._retry()

@DATASETS.register_module()
@BUILDER.register_module()
class LargeText2ImageDataset(Text2ImageDataset):
    # self.data_list only contains paths of images and captions

    def __init__(self, cap_folder=None, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.cap_folder = self.local_folder if cap_folder is None else cap_folder

    def _load_data(self, data_path):      # image path and annotation path are saved in a json file
        if data_path.endswith(".json"):
            with open(data_path, 'r') as f:
                self.data_list = json.load(f)
        else:
            self.data_list = []
            json_files = glob(f'{data_path}/*.json')
            for json_file in json_files:
                with open(json_file, 'r') as f:
                    self.data_list += json.load(f)

        print(f"Load {len(self.data_list)} data samples from {data_path}", flush=True)

    def __getitem__(self, idx):
        try:
            data_sample = self.data_list[idx]
            image = self._read_image(data_sample['image']).convert('RGB')
            with open(f"{self.cap_folder}/{data_sample['annotation']}", 'r') as f:
                caption = json.load(f)[self.cap_source]
            data = self._process_image(image)
            data.update(self._process_text(caption))
            data.update(type='text2image')
            return data

        except Exception as e:
            print(f"Error when reading {self.data_path}:{data_sample}: {e}", flush=True)
            return self._retry()


@DATASETS.register_module()
@BUILDER.register_module()
class MMapT2IDataset(Dataset):
    """
    Map-style Text2Image Dataset with mmap-based random access.
    一次性在 __init__ 打开 mmap;__getitem__ O(1) 读取指定行。
    """
    def __init__(
        self,
        jsonl_path: str,
        idx_path: str,
        image_size: int,
        tokenizer: Optional[Dict] = None,
        template_map_fn: Optional[Dict] = None,
        cap_source: str = "prompt",
        max_length: int = 2048,
        image_length: int = 512,
        unconditional: float = 0.01,
        crop_image: bool = False,
    ):
        super().__init__()

        # ---------- 基础参数 ----------
        self.jsonl_path = jsonl_path
        self.image_size = image_size
        self.cap_source = cap_source
        self.max_length = max_length
        self.unconditional = unconditional
        self.crop_image = crop_image

        # ---------- tokenizer / template ----------
        self.tokenizer = BUILDER.build(tokenizer)
        self.template_map_fn = template_map_fn

        # ---------- mmap 加载 ----------
        self._open_mmap(jsonl_path, idx_path)
        self.metainfo = {'task' :'unified'}
    # ===== mmap & index =====
    def _open_mmap(self, jsonl_path: str, idx_path: str):
        # mmap 文件
        self._jsonl_fp = open(jsonl_path, "r+b")
        self._mm = mmap.mmap(self._jsonl_fp.fileno(), 0, access=mmap.ACCESS_READ)

        # 读取 offset 索引
        with open(idx_path, "rb") as f:
            nlines = struct.unpack("<Q", f.read(8))[0]
            self._offsets = np.frombuffer(f.read(8 * nlines), dtype=np.uint64)
        print(f"[MMapT2IDataset] {jsonl_path}: {nlines} lines indexed")

    def __len__(self) -> int:
        return self._offsets.size

    def full_init(self):
        """Dummy full_init to be compatible with MMEngine ConcatDataset."""
        return
    def _read_line(self, idx: int) -> str:
        off = int(self._offsets[idx])
        self._mm.seek(off)
        return self._mm.readline().decode("utf-8")

    # ===== 核心处理 =====
    def _load_image(self, path: str) -> torch.Tensor:
        img = Image.open(path).convert("RGB")

        # 预处理:裁剪成方形 / pad
        if self.crop_image:
            img = crop2square(img)
        else:
            target_size = max(img.size)
            img = img.resize((target_size, target_size))

        img = img.resize((self.image_size, self.image_size))
        arr = np.asarray(img, dtype=np.uint8)          # HWC uint8
        px = torch.as_tensor(arr).float() / 255.0      # 0-1
        px = 2 * px - 1                                # -1 ~ 1
        return rearrange(px, "h w c -> c h w")         # CHW

    def _build_prompt(self, caption: str) -> torch.Tensor:
        if random.random() < self.unconditional:
            caption = "Generate an image."
        else:
            caption = f"Generate an image: {caption.strip()}"

        instr = self.template_map_fn["INSTRUCTION"].format(input=caption)
        ids = self.tokenizer.encode(
            instr, add_special_tokens=True, return_tensors="pt"
        )[0][: self.max_length]
        return ids

    def __getitem__(self, idx: int) -> Dict[str, Any]:
        # 1) 取 jsonl 行
        sample = json.loads(self._read_line(idx))

        # 2) 加载 & 处理图像
        pixel_values = self._load_image(sample["image"])

        # 3) 处理文本
        caption = sample.get(self.cap_source, "")
        input_ids = self._build_prompt(caption)

        # 4) 打包
        data = dict(
            pixel_values=pixel_values,
            input_ids=input_ids,
            type="text2image",
            image_file=sample["image"],
            idx=idx,
        )
        return data


@DATASETS.register_module()
@BUILDER.register_module()
class ReconstructDataset(Dataset):
    def __init__(self,
                 data_path: str,
                 image_size: int,
                 tokenizer=None,
                 prompt_template=None,
                 cap_source: str = "prompt",
                 max_length: int = 8192,
                 crop_image: bool = True,
                 img_prefix: str = ""):
        super().__init__()
        self.image_size = image_size
        self.tokenizer = BUILDER.build(tokenizer)
        self.tokenizer.add_tokens(["<image>"], special_tokens=True)
        self.prompt_template = prompt_template
        self.cap_source = cap_source
        self.max_length = max_length
        self.crop_image = crop_image
        self.img_prefix = img_prefix
        self._load_data(data_path)

        m = n = self.image_size // 16
        self.image_token_repeat = m * n + 64
        self.metainfo = {'task': 'unified'}

    def full_init(self):
        """Dummy full_init to be compatible with MMEngine ConcatDataset."""
        return

    def _load_data(self, path):
        with open(path) as f:
            self.data_list = [json.loads(l) for l in f]
        print(f"[I2ICaptionReconstructDataset] Loaded {len(self.data_list)} samples from {path}")

    def _add_prefix(self, rel):
        return os.path.join(self.img_prefix, rel.lstrip("/")) if self.img_prefix else rel

    def _read_image(self, path):
        img = Image.open(path).convert("RGB")
        assert img.width > 8 and img.height > 8 and 0.1 < img.width / img.height < 10
        return img

    # ---------- preprocess ----------
    def _process_image(self, img):
        img = crop2square(img) if self.crop_image else img.resize((max(img.size),)*2)
        img = img.resize((self.image_size, self.image_size))
        px  = torch.from_numpy(np.array(img)).float() / 255.
        px  = 2 * px - 1
        return rearrange(px, "h w c -> c h w")

    def _encode_prompt(self, text):
        # for bad_token in ["[IMAGE]", "<image_placeholder>", "<image_plaeholder>"]:
        #     text = text.replace(bad_token, "")
        text = "Repeat this image."
        prompt_in = f"<image>\n{text.strip()}"
        prompt = self.prompt_template["INSTRUCTION"].format(input=prompt_in)
        prompt = prompt.replace("<image>", "<image>" * self.image_token_repeat)
        input_ids = self.tokenizer.encode(prompt, add_special_tokens=True, return_tensors="pt")[0]
        mask = (input_ids != self.tokenizer.pad_token_id).long()
        return input_ids[:self.max_length], mask[:self.max_length]

    def __len__(self):
        return len(self.data_list)

    def _retry(self):
        return self.__getitem__(random.randrange(len(self)))

    def __getitem__(self, idx):
        try:
            sample = self.data_list[idx]
            src_img = self._read_image(self._add_prefix(sample["image"]))
            tgt_img = src_img
            caption = sample[self.cap_source]

            px_src = self._process_image(src_img)
            px_tgt = self._process_image(tgt_img)
            input_ids, mask = self._encode_prompt(caption)

            return {
                "pixel_values_src": px_src,
                "pixel_values": px_tgt,
                "input_ids": input_ids,
                "attention_mask": mask,
                "type": "image_edit"
            }
        except Exception as e:
            print(f"[I2ICaptionReconstructDataset] Error @ {idx}: {e}")
            return self._retry()

@DATASETS.register_module()
@BUILDER.register_module()
class UncondReconstructDataset(Dataset):
    def __init__(self,
                 data_path: str,
                 image_size: int,
                 tokenizer=None,
                 prompt_template=None,
                 cap_source: str = "prompt",
                 max_length: int = 8192,
                 crop_image: bool = True,
                 img_prefix: str = ""):
        super().__init__()
        self.image_size = image_size
        self.tokenizer = BUILDER.build(tokenizer)
        self.tokenizer.add_tokens(["<image>"], special_tokens=True)
        self.prompt_template = prompt_template
        self.max_length = max_length
        self.crop_image = crop_image
        self.img_prefix = img_prefix
        self.cap_source = cap_source


        self._load_data(data_path)

        # 计算 image token 展开数量
        m = n = self.image_size // 16
        self.image_token_repeat = m * n + 64
        self.metainfo = {'task': 'unified'}
        
    def _load_data(self, path):
        with open(path) as f:
            self.data_list = [json.loads(l) for l in f]
        print(f"[I2IUncondReconstructDataset] Loaded {len(self.data_list)} samples from {path}")

    def _add_prefix(self, rel_path):
        return os.path.join(self.img_prefix, rel_path.lstrip("/")) if self.img_prefix else rel_path

    def full_init(self):
        """Dummy full_init to be compatible with MMEngine ConcatDataset."""
        return
    def _read_image(self, path):
        image = Image.open(path).convert("RGB")
        assert image.width > 8 and image.height > 8 and 0.1 < image.width / image.height < 10
        return image


    # ---------- preprocess ----------
    def _process_image(self, img):
        img = crop2square(img) if self.crop_image else img.resize((max(img.size),)*2)
        img = img.resize((self.image_size, self.image_size))
        px  = torch.from_numpy(np.array(img)).float() / 255.
        px  = 2 * px - 1
        return rearrange(px, "h w c -> c h w")

    def __len__(self):
        return len(self.data_list)

    def _retry(self, max_tries=5):
        for _ in range(max_tries):
            try:
                return self.__getitem__(random.randrange(len(self)))
            except Exception:
                continue
        raise RuntimeError("Exceeded max retries in I2IUncondReconstructDataset")

    def __getitem__(self, idx):
        try:
            sample = self.data_list[idx]
            path = self._add_prefix(sample["image"])
            img = self._read_image(path)
            px = self._process_image(img)

            # ==== 填入空文本 ====
            input_ids = torch.zeros(0, dtype=torch.long)
            attention_mask = torch.zeros(0, dtype=torch.long)

            return {
                "pixel_values_src": px,
                "pixel_values": px.clone(),
                "type": "image_edit",
                "input_ids": input_ids,
                "attention_mask": attention_mask,
                # 重建任务不再输出 input_ids / attention_mask
            }
        except Exception as e:
            print(f"[I2IUncondReconstructDataset] Error @ {idx}: {e}")
            return self._retry()



@DATASETS.register_module()
@BUILDER.register_module()
class Text2ImageJSONLDataset(Dataset):
    def __init__(self,
                 data_path,
                 image_size,
                 tokenizer=None,
                 prompt_template=None,
                 cap_source='prompt',
                 max_length=1024,
                 unconditional=0.1,
                 crop_image=True,
                 ):
        super().__init__()
        self.data_path = data_path
        self._load_data(data_path)
        self.image_size = image_size
        self.tokenizer = BUILDER.build(tokenizer)
        self.tokenizer.add_tokens(["<image>"], special_tokens=True)
        self.prompt_template = prompt_template
        self.cap_source = cap_source
        self.max_length = max_length
        self.unconditional = unconditional
        self.crop_image = crop_image
        self.metainfo = {'task': 'unified'}

    def _load_data(self, data_path):
        self.data_list = []
        with open(data_path, 'r') as f:
            for line in f:
                self.data_list.append(json.loads(line.strip()))
        print(f"Loaded {len(self.data_list)} samples from {data_path}")

    def full_init(self):
        """Dummy full_init for MMEngine ConcatDataset compatibility."""
        pass
    def __len__(self):
        return len(self.data_list)

    def _read_image(self, image_file):
        image = Image.open(image_file).convert('RGB')
        assert image.width > 8 and image.height > 8
        assert 0.1 < image.width / image.height < 10
        return image

    def _process_image(self, image):
        if self.crop_image:
            image = crop2square(image)
        else:
            target_size = max(image.size)
            image = image.resize((target_size, target_size))

        image = image.resize((self.image_size, self.image_size))
        pixel_values = torch.from_numpy(np.array(image)).float() / 255.0
        pixel_values = 2 * pixel_values - 1  # [-1, 1]
        pixel_values = rearrange(pixel_values, 'h w c -> c h w')
        return dict(pixel_values=pixel_values)

    def _process_text(self, text):
        if random.uniform(0, 1) < self.unconditional:
            text = "Generate an image."
        else:
            text = f"Generate an image: {text.strip()}"
        prompt = self.prompt_template['INSTRUCTION'].format(input=text)
        input_ids = self.tokenizer.encode(prompt, add_special_tokens=True, return_tensors='pt')[0]
        return dict(input_ids=input_ids[:self.max_length])

    def _retry(self):
        return self.__getitem__(random.randint(0, len(self.data_list) - 1))

    def __getitem__(self, idx):
        try:
            sample = self.data_list[idx]
            image = self._read_image(sample['image'])
            caption = sample[self.cap_source]
            data = self._process_image(image)
            data.update(self._process_text(caption))
            data.update(type='text2image')
            return data
        except Exception as e:
            print(f"[JSONLDataset] Error reading sample #{idx}: {e}")
            return self._retry()



# 纯文生图没有占位符的问题,下面编辑数据集需要考虑占位符
@DATASETS.register_module()
@BUILDER.register_module()
class ImageEditJSONLDataset(Dataset):
    """
    Dataset for <src, tgt, prompt> image editing, now decoupled from tokenization logic.
    """
    def __init__(self,
                 data_path: str,
                 image_size: int,
                 tokenizer=None,
                 prompt_template=None,
                 max_length: int = 8192,
                 cap_source: str = "prompt",
                 unconditional: float = 0,
                 crop_image: bool = False,
                 img_prefix: str = ""):
        super().__init__()
        self.data_path = data_path
        self.image_size = image_size
        self.tokenizer = BUILDER.build(tokenizer)
        self.prompt_template = prompt_template
        self.max_length = max_length
        self.cap_source = cap_source
        self.unconditional = unconditional
        self.crop_image = crop_image
        self.img_prefix = img_prefix
        self._load_data(data_path)
        # Calculate image token repetition length, consistent with inference.
        m = n = self.image_size // 16
        self.image_token_repeat = m * n + 64
        self.metainfo = {'task': 'unified'}

        self.tokenizer.add_tokens(["<image>"], special_tokens=True)
        self.image_token_idx = self.tokenizer.convert_tokens_to_ids("<image>")
        print(f"Registered <image> token at index {self.image_token_idx}")

    def _load_data(self, path):
        with open(path) as f:
            self.data_list = [json.loads(l) for l in f]
        print(f"[ImageEditJSONLDataset] Loaded {len(self.data_list)} samples from {path}")

    def full_init(self):
        """Dummy full_init for MMEngine ConcatDataset compatibility."""
        pass

    def _add_prefix(self, rel_path):
        return os.path.join(self.img_prefix, rel_path.lstrip("/")) if self.img_prefix else rel_path

    def _read_image(self, path):
        path = path.replace("datasets_vlm02", "datasets_vlm")
        img = Image.open(path).convert("RGB")
        assert img.width > 8 and img.height > 8 and 0.1 < img.width / img.height < 10
        return img

    def _process_image(self, img):
        img = crop2square(img) if self.crop_image else img.resize((max(img.size),) * 2)
        img = img.resize((self.image_size, self.image_size))
        px = torch.from_numpy(np.array(img)).float() / 255.
        px = 2 * px - 1
        return rearrange(px, "h w c -> c h w")

    # --- REFACTORED: This method now only prepares the raw prompt text ---
    def _prepare_prompt_text(self, raw_text: str):
        """Cleans text and handles unconditional generation."""

        for bad_token in ["[IMAGE]", "<image_placeholder>", "<image_plaeholder>", "<image>"]:
            txt = raw_text.replace(bad_token, "")
        txt = txt.strip()

        if random.random() < self.unconditional:
            txt = "Edit this image."
        return txt

    def _retry(self):
        return self.__getitem__(random.randrange(len(self)))

    def __len__(self):
        return len(self.data_list)

    def __getitem__(self, idx):
        try:
            sample = self.data_list[idx]
            src_path, tgt_path = map(self._add_prefix, [sample["images"][0], sample["image"]])
            src_img, tgt_img = map(self._read_image, [src_path, tgt_path])

            px_src, px_tgt = map(self._process_image, [src_img, tgt_img])
            
            # --- MODIFIED: Call the unified encode_fn ---
            # 1. Prepare the raw prompt string
            prompt_text = self._prepare_prompt_text(sample[self.cap_source])

            # 2. Delegate all encoding and formatting to encode_fn
            encoded_text = encode_fn(
                example=prompt_text,
                tokenizer=self.tokenizer,
                prompt_template=self.prompt_template,
                max_length=self.max_length,
                image_length=self.image_token_repeat,
                image_token_idx=self.image_token_idx
            )

            return {
                    "pixel_values_src": px_src,
                    "pixel_values": px_tgt,
                    "input_ids": torch.tensor(encoded_text["input_ids"], dtype=torch.long),
                    "attention_mask": torch.tensor(encoded_text["attention_mask"], dtype=torch.long),
                    "type": "image_edit",
                }
        except Exception as e:
            print(f"[ImageEditJSONLDataset] Error @ {idx}: {e} from {self.data_path}")
            return self._retry()