File size: 5,985 Bytes
ea88892 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
from torch.utils.data import Dataset
from PIL import Image
import os
import json
import random
import torch
import numpy as np
from einops import rearrange
from xtuner.registry import BUILDER
from xtuner.dataset.utils import expand2square
from src.datasets.utils import crop2square, encode_fn, load_jsonl
from xtuner.utils import DEFAULT_IMAGE_TOKEN
from transformers import AutoImageProcessor
class VLMDataset(Dataset):
def __init__(
self,
data_path,
image_size,
tokenizer=None,
template_map_fn=None,
max_length=2048,
min_image_size=80,
pad_image=True,
local_folder="",
key_value="conversations",
):
super().__init__()
self.data_path = data_path
self._load_data(data_path)
self.image_size = image_size
self.tokenizer = BUILDER.build(tokenizer)
self.prompt_template = template_map_fn["template"]
self.template_map_fn = BUILDER.build(template_map_fn)
self.max_length = max_length
self.pad_image = pad_image
self.min_image_size = min_image_size
self.key_value = key_value
self.processor = AutoImageProcessor.from_pretrained(
"checkpoint/siglip2-so400m-patch16-512"
)
self.metainfo = {'task' :'unified'}
self.DEFAULT_IMAGE_TOKEN = DEFAULT_IMAGE_TOKEN
m = n = self.image_size // 16
self.image_token_repeat = m * n + 64
self.tokenizer.add_tokens(["<image>"], special_tokens=True)
self.image_token_idx = self.tokenizer.convert_tokens_to_ids("<image>")
print(f"Registered <image> token at index {self.image_token_idx}")
def _load_data(
self, data_path: str
): # image path and annotation path are saved in a json file
self.data_list = load_jsonl(data_path)
print(f"Load {len(self.data_list)} data samples from {data_path}", flush=True)
def full_init(self):
"""Dummy full_init to be compatible with MMEngine ConcatDataset."""
return
def __len__(self):
return len(self.data_list)
def _read_image(self, image_file):
image = Image.open(image_file)
assert (
image.width > self.min_image_size and image.height > self.min_image_size
), f"Image: {image.size}"
assert image.width / image.height > 0.1, f"Image: {image.size}"
assert image.width / image.height < 10, f"Image: {image.size}"
return image.convert("RGB")
# def _process_image(self, image):
# data = dict()
# # if self.pad_image:
# # image = expand2square(image, (127, 127, 127))
# # else:
# # image = crop2square(image)
# # image = image.resize(size=(self.image_size, self.image_size))
# # pixel_values = torch.from_numpy(np.array(image)).float()
# # pixel_values = pixel_values / 255
# # pixel_values = 2 * pixel_values - 1
# # pixel_values = rearrange(pixel_values, "h w c -> c h w")
# image = image.resize((self.image_size, self.image_size))
# inputs = self.processor(images=image, return_tensors="pt")
# pixel_values = inputs["pixel_values"].squeeze(0)
# data.update(pixel_values=pixel_values)
# return data
def _process_image(self, image: Image.Image):
# 1) 可选 crop/pad to square
if self.pad_image:
image = crop2square(image)
# 2) 手动 resize 到指定大小
image = image.resize((self.image_size, self.image_size))
# 3) to tensor & normalize
arr = np.array(image).astype(np.float32) / 255.0 # HWC
arr = 2 * arr - 1 # [-1,1]
tensor = torch.from_numpy(arr) # HWC
tensor = rearrange(tensor, "h w c -> c h w") # CHW
return {"pixel_values": tensor}
def _process_text(self, question, answer):
data_dict = dict(
conversation=[
{
"input": f"{self.DEFAULT_IMAGE_TOKEN}\n{question}",
"output": answer,
}
]
)
data_dict.update(self.template_map_fn(data_dict))
data_dict.update(
encode_fn(
example=data_dict,
tokenizer=self.tokenizer,
max_length=self.max_length,
image_length=self.image_token_repeat,
input_ids_with_output=True,
with_image_token=True,
truncation='right',
image_token_idx=self.image_token_idx,
image_token_str=self.DEFAULT_IMAGE_TOKEN,
)
)
# assert (
# torch.tensor(data_dict["input_ids"]).long() == self.image_token_idx
# ).sum() == self.image_length, "Error in image format"
data_dict["type"] = "image2text"
return data_dict
def _retry(self):
return self.__getitem__(random.choice(range(self.__len__())))
def __getitem__(self, idx):
try:
data_sample = self.data_list[idx]
image = self._read_image(data_sample["image"]).convert("RGB")
data = self._process_image(image)
del image
question = (
data_sample[self.key_value][0]["value"]
.replace("<image>", "")
.strip()
)
answer = (
data_sample[self.key_value][1]["value"]
.replace("<image>", "")
.strip()
)
data.update(self._process_text(question, answer))
data.update(image_file=data_sample["image"])
return data
except Exception as e:
print(
f"Error when reading data_sample:{data_sample},{self.data_path}:{data_sample['image']}: {e}",
flush=True,
)
return self._retry()
|