Spaces:
dreroc
/
Running on Zero

File size: 28,270 Bytes
ea88892
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
import torch
import torch.nn.functional as F
from torch.nn.modules.module import T
from mmengine.model import BaseModel
from torch.autograd.function import Function
from mmengine.logging import print_log
from xtuner.model.utils import guess_load_checkpoint
import os
#from .skywork_unipic import SkyworkUnipic
from .skywork_unipic_siglip import SkyworkUnipic
from xtuner.utils import IMAGE_TOKEN_INDEX
import torch.distributed as dist
import json
from einops import rearrange


def _load_state_dict_with_ds(module_to_load, state_dict, start_prefix="", strict=True):
    try:
        import deepspeed
    except ImportError:
        raise ImportError("deepspeed is not installed. Please install deepspeed to use this feature.")
    
    # copy state_dict so _load_from_state_dict can modify it
    metadata = getattr(state_dict, "_metadata", None)
    state_dict = state_dict.copy()
    if metadata is not None:
        state_dict._metadata = metadata

    error_msgs = []
    missing_keys = []
    unexpected_keys = []

    def load(module: torch.nn.Module, state_dict, prefix=""):
        local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
        args = (state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
        # Parameters of module and children will start with prefix. We can exit early if there are none in this
        # state_dict
        if len([key for key in state_dict if key.startswith(prefix)]) > 0:
                # In sharded models, each shard has only part of the full state_dict, so only gather
                # parameters that are in the current state_dict.
                named_parameters = dict(
                    module.named_parameters(prefix=prefix[:-1], recurse=False)
                )
                params_to_gather = [
                    named_parameters[k]
                    for k in state_dict.keys()
                    if k in named_parameters
                ]
                if len(params_to_gather) > 0:
                    # because zero3 puts placeholders in model params, this context
                    # manager gathers (unpartitions) the params of the current layer, then loads from
                    # the state dict and then re-partitions them again
                    with deepspeed.zero.GatheredParameters(
                        params_to_gather, modifier_rank=0
                    ):
                        if deepspeed.comm.get_rank() == 0:
                            module._load_from_state_dict(*args)
        else:
            module._load_from_state_dict(*args)

        for name, child in module._modules.items():
            if child is not None:
                load(child, state_dict, prefix + name + ".")

    load(module_to_load, state_dict, start_prefix)
    if len(missing_keys) > 0:
        print_log(f"[WARNING] Missing keys: {missing_keys}")
    if len(unexpected_keys) > 0:
        print_log(f"[WARNING] Unexpected keys: {unexpected_keys}")
    if error_msgs:
        raise RuntimeError(
            "Error(s) in loading state_dict for {}:\n\t{}".format(
                module_to_load.__class__.__name__, "\n\t".join(error_msgs)
            )
        )


class _ScaleGradient(Function):
    @staticmethod
    def forward(ctx, input, scale):
        ctx.scale = scale
        return input

    @staticmethod
    def backward(ctx, grad_output):
        return grad_output * ctx.scale, None


class SkyworkUnipicDev(SkyworkUnipic, BaseModel):
    def __init__(
        self,
        grad_scale=0.1,
        loss_weights=None,
        pretrained_pth=None,
        mar_path=None,
        siglip_proj_path=None,
        freeze_llm=False,
        freeze_mar=False,
        freeze_mar_decoder=False,
        freeze_siglip_proj=False,
        gradient_checkpointing=True,
        **kwargs,
    ):
        if loss_weights is None:
            loss_weights = {
                "image2text": 0.01,
                "text2image": 1.0,
                "image_edit": 1.0,
                "contrastive": 0.1,
            }
        super().__init__(**kwargs)
        
        self.grad_scale = grad_scale
        self.loss_weights = loss_weights
        self.pretrained_pth = pretrained_pth
        self.mar_path = mar_path
        self.siglip_proj_path = siglip_proj_path

        # 判断分布式 rank
        rank = dist.get_rank() if dist.is_initialized() else 0

        # === 加载预训练权重 ===
        if pretrained_pth:
            self.load_hf_weights(
                skywork_unipic_ckpt=pretrained_pth,
                siglip_proj_path=siglip_proj_path,
                mar_path=mar_path
            )

        # === 冻结模块 ===
        if freeze_llm:
            self.llm.requires_grad_(False)
        if freeze_mar:
            self.mar.requires_grad_(False)
        if freeze_mar_decoder:
            # 仅冻结 MAR 解码器部件
            for param in self.mar.decoder_embed.parameters():
                param.requires_grad = False
            for block in self.mar.decoder_blocks:
                for param in block.parameters():
                    param.requires_grad = False
            for param in self.mar.decoder_norm.parameters():
                param.requires_grad = False
            if isinstance(self.mar.decoder_pos_embed_learned, torch.nn.Parameter):
                self.mar.decoder_pos_embed_learned.requires_grad = False
            if isinstance(self.mar.diffusion_pos_embed_learned, torch.nn.Parameter):
                self.mar.diffusion_pos_embed_learned.requires_grad = False
        if freeze_siglip_proj:
            self.siglip2_proj.requires_grad_(False)

        # === 梯度检查点 ===
        if gradient_checkpointing:
            self.gradient_checkpointing_enable()
        else:
            self.gradient_checkpointing_disable()

    
    def load_hf_weights(self,
                        skywork_unipic_ckpt: str = None,
                        siglip_proj_path: str = None,
                        mar_path: str = None):
        """统一加载 SkyworkUnipic(可选) + SigLIP2 + MAR"""
        device = "cpu"
        state_dict = {}

        def _print_load_result(module_name, missing, unexpected):
            print_log(f"[INFO] Loaded {module_name}. missing={len(missing)}, unexpected={len(unexpected)}")

        # === SkyworkUnipic 主模型(可选) ===
        if skywork_unipic_ckpt:
            print_log(f"[INFO] Loading SkyworkUnipic checkpoint from: {skywork_unipic_ckpt}")
            # 加载 checkpoint(支持文件或目录)
            if os.path.isfile(skywork_unipic_ckpt):
                skywork_unipic_state = torch.load(skywork_unipic_ckpt, map_location=device)
            else:
                idx = os.path.join(skywork_unipic_ckpt, "pytorch_model.bin.index.json")
                if os.path.exists(idx):
                    with open(idx, 'r') as f:
                        index = json.load(f)
                    skywork_unipic_state = {}
                    for shard in sorted(set(index["weight_map"].values())):
                        shard_path = os.path.join(skywork_unipic_ckpt, shard)
                        skywork_unipic_state.update(torch.load(shard_path, map_location=device))
                else:
                    bin_path = os.path.join(skywork_unipic_ckpt, "pytorch_model.bin")
                    skywork_unipic_state = torch.load(bin_path, map_location=device)

            # 删除 SkyworkUnipic checkpoint 中可能带的 MAR pos_embed,避免覆盖

            # for key in [
            #     "mar.encoder_pos_embed_learned",
            #     "mar.decoder_pos_embed_learned",
            #     "mar.diffusion_pos_embed_learned"
            # ]:
            #     if key in skywork_unipic_state:
            #         print_log(f"[INFO] Dropping `{key}` from SkyworkUnipic checkpoint")
            #         del skywork_unipic_state[key]
            model_dict = self.state_dict()
            
            filtered_checkpoint = {}
            shape_mismatch_keys = []

            for k, v in skywork_unipic_state.items():
                if k in model_dict:
                    if v.shape == model_dict[k].shape:
                        filtered_checkpoint[k] = v
                    else:
                        shape_mismatch_keys.append((k, v.shape, model_dict[k].shape))

            missing, unexpected = self.load_state_dict(filtered_checkpoint, strict=False)
            # 打印不匹配的 key 及其形状
            if shape_mismatch_keys:
                print("以下 key 因形状不匹配被跳过:")
                for k, checkpoint_shape, model_shape in shape_mismatch_keys:
                    print(f"  - {k}:")
                    print(f"    checkpoint 中的形状: {checkpoint_shape}")
                    print(f"    当前模型的形状: {model_shape}")
            else:
                print("所有 key 形状匹配,未跳过任何参数")

            # missing, unexpected = self.load_state_dict(skywork_unipic_state, strict=False)
            _print_load_result("SkyworkUnipic", missing, unexpected)
        else:
            print_log("[INFO] Skipping SkyworkUnipic checkpoint loading")

        # === SigLIP2 权重 ===
        if siglip_proj_path:
            print_log(f"[INFO] Loading SigLIP2 weights from: {siglip_proj_path}")
            siglip_state = torch.load(
                siglip_proj_path, map_location="cpu", weights_only=False
            )
            # 如果 checkpoint 是 {"model": {...}}
            if isinstance(siglip_state, dict) and "model" in siglip_state:
                siglip_state = siglip_state["model"]
            missing, unexpected = self.siglip2_proj.load_state_dict(
                siglip_state, strict=False
            )
            _print_load_result("SigLIP2", missing, unexpected)
        else:
            print_log("[INFO] No SigLIP2 checkpoint provided, skipping")

        # === MAR 权重 ===
        if mar_path:
            print_log(f"[INFO] Loading MAR weights from: {mar_path}")
            mar_state = torch.load(mar_path, map_location="cpu", weights_only=False)
            # 兼容 model_ema or model dict

            if isinstance(mar_state, dict) and "model_ema" in mar_state:
                mar_state = mar_state["model_ema"]

            elif isinstance(mar_state, dict) and "model" in mar_state:
                mar_state = mar_state["model"]
            
            
            # 如果 key 带有 “mar.” 前缀,批量去掉
            if any(k.startswith("mar.") for k in mar_state):
                filtered_mar = {
                    k.replace("mar.", "", 1): v
                    for k, v in mar_state.items()
                    if k.startswith("mar.")
                }
            else:
                filtered_mar = mar_state

            missing, unexpected = self.mar.load_state_dict(
                filtered_mar, strict=False
            )
            _print_load_result("MAR", missing, unexpected)
        else:
            print_log("[INFO] No MAR checkpoint provided, skipping")

        return state_dict



    def gradient_checkpointing_disable(self):
        self.llm.gradient_checkpointing_disable()
        self.mar.gradient_checkpointing_disable()

    def gradient_checkpointing_enable(self):
        self.llm.gradient_checkpointing_enable()
        self.mar.gradient_checkpointing_enable()

    def state_dict(self, *args, **kwargs):
        state_dict = super().state_dict(*args, **kwargs)
        state_dict = {k: v for k, v in state_dict.items()
                      if 'vae.' not in k}

        return state_dict

    def train(self: T, mode: bool = True) -> T:
        super().train(mode=mode)
        self.vae.train(mode=False)
        return self

    def text2image_loss(self, data_dict):
        x = data_dict['pixel_values'].to(dtype=self.dtype, device=self.device)
        x = self.encode(x)   # b m n c
        b, m, n, _ = x.shape
        gt_latents = x.clone().detach().view(b, m*n, -1)

        orders = self.mar.sample_orders(bsz=b, seq_len=m*n)
        mask = self.mar.random_masking(x.flatten(1, 2), orders)

        input_ids = data_dict['input_ids'].to(self.device)
        attention_mask = data_dict['attention_mask'].to(self.device)
        x_enc = self.forward_mae_encoder(x, mask, input_ids=input_ids,
                                         attention_mask=attention_mask)
        z = self.mar.forward_mae_decoder(x_enc, mask, image_shape=(m, n))

        loss = self.mar.forward_loss(z=z, target=gt_latents, mask=mask)

        return loss
    
    def image2text_loss(self, data_dict):
        input_ids = data_dict['input_ids'].to(self.device)
        attention_mask = data_dict['attention_mask'].to(self.device)
        labels = data_dict['labels'].to(self.device)

        pixel_values = data_dict.get('pixel_values', None)
        # print("pixel_values batch:", pixel_values.shape)
        # print("input_ids batch:", input_ids.shape)
        if pixel_values is None:
            inputs_embeds = self.llm.get_input_embeddings()(input_ids)
            _, z_null = self.extract_visual_feature(
                torch.zeros(1, 16, 16, self.token_embed_dim,
                            dtype=self.dtype, device=self.device)
            )
            loss_null = z_null.mean() * 0.0
            print(f"No image found in this batch!", flush=True)
        else:
            x = pixel_values.to(dtype=self.dtype, device=self.device)
            x = self.encode(x)  # b m n c
            _, z_enc = self.extract_visual_feature(x)

            if self.grad_scale is not None:
                z_enc = _ScaleGradient.apply(z_enc, self.grad_scale)

            inputs_embeds = z_enc.new_zeros(*input_ids.shape, self.llm.config.hidden_size)
            
            self.tokenizer.add_tokens(["<image>"], special_tokens=True)
            IMAGE_TOKEN_INDEX = self.tokenizer.convert_tokens_to_ids("<image>")
            # print(f"IMAGE_TOKEN_INDEX: {IMAGE_TOKEN_INDEX}")
            img_tokens = (torch.tensor(input_ids) == IMAGE_TOKEN_INDEX).sum().item()
            # print(f"[校验日志] input_ids长度: {len('input_ids')}, 图像token出现次数: {img_tokens}\n")

            inputs_embeds[input_ids == IMAGE_TOKEN_INDEX] = z_enc.flatten(0, 1)
            inputs_embeds[input_ids != IMAGE_TOKEN_INDEX] = self.llm.get_input_embeddings()(
                input_ids[input_ids != IMAGE_TOKEN_INDEX])
            loss_null = 0.0

        output = self.llm_model(inputs_embeds=inputs_embeds,
                                attention_mask=attention_mask,
                                return_dict=True)

        last_hidden_state = output.last_hidden_state[:, :-1]
        labels = labels[:, 1:]
        last_hidden_state = last_hidden_state[labels >= 0]
        labels = labels[labels >= 0]
        logits = self.llm.get_output_embeddings()(last_hidden_state)

        loss_i2t = F.cross_entropy(input=logits, target=labels)

        return loss_i2t + loss_null
    
    # def image_edit_loss(self, data_dict):
    #     # 1. 图像前向:拼 batch 并编码到视觉特征
    #     x_src = data_dict['pixel_values_src'].to(dtype=self.dtype, device=self.device)  # 源图像批次,shape=[b_src, C, H, W]
    #     x = data_dict['pixel_values'].to(dtype=self.dtype, device=self.device)          # 编辑图像批次,shape=[b_edit, C, H, W]
    #     print_log(f"[DEBUG image_edit_loss] x_src.shape = {x_src.shape}, x.shape = {x.shape}", level="WARNING")

    #     # b_edit 应该 >= b_src
    #     assert x.shape[0] >= x_src.shape[0], \
    #         f"编辑批次大小 ({x.shape[0]}) 必须 >= 源图像批次大小 ({x_src.shape[0]})"

    #     # 拼接并一次性编码
    #     x_all = torch.cat([x_src, x], dim=0)          # shape=[b_src + b_edit, C, H, W]
    #     x_all = self.encode(x_all)                   # shape=[b_src + b_edit, m, n, c]
    #     # 分割回源/编辑两部分
    #     x_src_enc, x_enc = x_all.split([x_src.shape[0], x.shape[0]], dim=0)
    #     # x_src_enc.shape=[b_src, m, n, c], x_enc.shape=[b_edit, m, n, c]

    #     # 2. 提取视觉特征:x_con 用于 decoder 条件,z_src 用于填充文本中的 <image> token
    #     x_con, z_src = self.extract_visual_feature(x_src_enc)
    #     if self.grad_scale is not None:
    #         x_con = _ScaleGradient.apply(x_con, self.grad_scale)
    #         z_src = _ScaleGradient.apply(z_src, self.grad_scale)
    #     # z_src.shape = [b_src, m*n, C]

    #     # 3. 文本条件分支:构造 inputs_embeds
    #     attention_mask = data_dict['attention_mask'].to(self.device)  # shape=[b_edit, seq_len]
    #     input_ids      = data_dict['input_ids'].to(self.device)       # shape=[b_edit, seq_len]
    #     b_edit, seq_len = input_ids.shape
    #     hidden_size     = self.llm.config.hidden_size

    #     # 先准备一个全 0 的 inputs_embeds
    #     inputs_embeds = z_src.new_zeros(b_edit, seq_len, hidden_size)  # shape=[b_edit, seq_len, hidden_size]

    #     # 找到所有 <image> token 位置的 mask
    #     mask_imgpos = (input_ids == IMAGE_TOKEN_INDEX)                  # bool tensor [b_edit, seq_len]

    #     # 需要将单个 z_src 展开成 b_edit 份,再按 mask_imgpos 填入
    #     # 1) expand:把 z_src 从 [b_src, m*n, C] → [b_edit, m*n, C]
    #     #    (一般 b_src=1,所以就是复制那一份)
    #     z_src_rep = z_src.expand(b_edit, -1, -1)                        # [b_edit, m*n, C]
    #     # 2) flatten:将二维展开到一维,对应 mask_imgpos.sum() 个位置
    #     flat_z = z_src_rep.flatten(0, 1)                               # [b_edit*m*n, C]

    #     # **重要检查**:保证 mask_imgpos 中 True 的数量 == flat_z.shape[0]
    #     img_tokens_count = mask_imgpos.sum().item()
    #     assert img_tokens_count == flat_z.shape[0], \
    #         f"<image> token 数 ({img_tokens_count}) 不等于视觉特征数 ({flat_z.shape[0]})"

    #     # 填充视觉 token 对应位置
    #     inputs_embeds[mask_imgpos] = flat_z

    #     # 剩下的位置用文本 embedding
    #     txt_pos = ~mask_imgpos
    #     txt_embeddings = self.llm.get_input_embeddings()(input_ids[txt_pos])
    #     inputs_embeds[txt_pos] = txt_embeddings

    #     # 4. MAE-style 重建分支:在 decoder 前注入 inputs_embeds 与 attention_mask
    #     b, m, n, c = x_enc.shape
    #     gt = x_enc.view(b, m*n, c)                                     # 作为重建目标
    #     orders = self.mar.sample_orders(bsz=b, seq_len=m*n)
    #     mask   = self.mar.random_masking(x_enc.flatten(1, 2), orders)

    #     # 带条件的 encoder forward
    #     x_enc_out = self.forward_mae_encoder(
    #         x_enc,
    #         mask,
    #         inputs_embeds=inputs_embeds,
    #         attention_mask=attention_mask
    #     )
    #     # decoder 重建
    #     z_dec = self.mar.forward_mae_decoder(
    #         x_enc_out,
    #         mask,
    #         image_shape=(m, n),
    #         x_con=x_con
    #     )
    #     # 计算损失
    #     loss = self.mar.forward_loss(z=z_dec, target=gt, mask=mask)
    #     return loss


    # def image_edit_loss_vae(self, data_dict):
    #     """
    #     计算图像编辑任务的损失。
    #     参考图(x_src)的特征直接作为条件(x_con)送入解码器,不参与编码器重建。
    #     编码器(encoder)仅在目标图(x_tgt)上进行掩码重建,并接收文本和参考图的上下文信息。
    #     """
    #     # === 步骤 1: 读入数据 ===
    #     x_src = data_dict['pixel_values_src'].to(self.device).to(self.dtype)
    #     x_tgt = data_dict['pixel_values'].to(self.device).to(self.dtype)
    #     attention_mask = data_dict['attention_mask'].to(self.device)
    #     input_ids = data_dict['input_ids'].to(self.device)
    #     # IMG_TOKEN_INDEX = self.tokenizer.convert_tokens_to_ids("<image>")
    #     B = x_tgt.shape[0]

    #     # === 步骤 2: 处理参考图 (Reference Image) ===
    #     # VAE编码,不计算梯度
    #     with torch.no_grad():
    #         z_src_latent = self.encode(x_src)  # [B, m, n, token_dim]

    #     # 将VAE潜变量转换为解码器条件(x_con)和LLM输入(z_src_buf)
    #     # 这一步实现了 "参考图潜变量 -> 解码器" 的直接通路
    #     x_con, z_src_buf = self.vae_latent_to_decoder_feature(z_src_latent)
    #     # x_con:    [B, 4096, enc_dim] -> 用于解码器
    #     # z_src_buf: [B, 4160, llm_dim] -> 用于LLM

    #     # === 步骤 3: 构建LLM的输入 (inputs_embeds) ===
    #     # 结合文本指令(input_ids)和参考图特征(z_src_buf)
    #     _, T = input_ids.shape
    #     H_llm = self.llm.config.hidden_size
    #     inputs_embeds = torch.zeros(B, T, H_llm, device=self.device, dtype=z_src_buf.dtype)

    #     # 填充<image> token和文本token的嵌入
    #     inputs_embeds[input_ids == IMG_TOKEN_INDEX] = z_src_buf.flatten(0, 1)
    #     # input_ids 为33280
    #     # z_src_buf.flatten(0, 1) 为33792 为什么 会比input_ids 多512个呢?
    #     inputs_embeds[input_ids != IMG_TOKEN_INDEX] = self.llm.get_input_embeddings()(
    #         input_ids[input_ids != IMG_TOKEN_INDEX]
    #     )

    #     # === 步骤 4: 处理目标图 (Target Image) 并进行编码器前向传播 ===
    #     # VAE编码目标图,不计算梯度
    #     with torch.no_grad():
    #         z_tgt_latent = self.encode(x_tgt)  # [B, m, n, token_dim]

    #     # 为目标图潜变量创建掩码(mask)以进行MAE重建
    #     B, m, n, token_dim = z_tgt_latent.shape
    #     patch_tokens_tgt = z_tgt_latent.view(B, m * n, token_dim)  # 作为重建的目标
    #     orders = self.mar.sample_orders(bsz=B, seq_len=m * n)
    #     mask = self.mar.random_masking(patch_tokens_tgt, orders)

    #     # **核心**: 编码器只处理目标图(z_tgt_latent)的可见部分,并接收LLM的上下文
    #     x_enc = self.forward_mae_encoder(
    #         z_tgt_latent,  # 目标图潜变量
    #         mask,
    #         detach=False,
    #         inputs_embeds=inputs_embeds,  # 包含文本和参考图信息的上下文
    #         attention_mask=attention_mask
    #     )

    #     # === 步骤 5: 解码器重建 ===
    #     # 解码器使用编码器的输出(x_enc)和参考图的特征(x_con)来重建完整的潜在表示
    #     z_pred = self.mar.forward_mae_decoder(
    #         x_enc,
    #         mask,
    #         image_shape=(m, n),
    #         x_con=x_con  # ★ 参考图特征直接作用于此
    #     )

    #     # === 步骤 6: 计算损失 ===
    #     loss = self.mar.forward_loss(
    #         z=z_pred,
    #         target=patch_tokens_tgt,
    #         mask=mask
    #     )
    #     return loss
    
    def image_edit_loss_contrastive(self, data_dict):
        # Step 1: 获取图像特征
        x_src = data_dict['pixel_values_src'].to(dtype=self.dtype, device=self.device)
        x = data_dict['pixel_values'].to(dtype=self.dtype, device=self.device)
        assert len(x_src) >= len(x)
        x_src, x = self.encode(torch.cat([x_src, x])).split([len(x_src), len(x)], dim=0)

        # Step 2: 文本输入部分
        attention_mask = data_dict['attention_mask'].to(self.device)
        input_ids = data_dict['input_ids'].to(self.device)

        x_con, z_src = self.extract_visual_feature(x_src)
        if self.grad_scale is not None:
            z_src = _ScaleGradient.apply(z_src, self.grad_scale)
            x_con = _ScaleGradient.apply(x_con, self.grad_scale)

        inputs_embeds = z_src.new_zeros(*input_ids.shape, self.llm.config.hidden_size)
        # IMAGE_TOKEN_INDEX = self.tokenizer.convert_tokens_to_ids("<image>")
        inputs_embeds[input_ids == IMAGE_TOKEN_INDEX] = z_src.flatten(0, 1)
        inputs_embeds[input_ids != IMAGE_TOKEN_INDEX] = self.llm.get_input_embeddings()(
            input_ids[input_ids != IMAGE_TOKEN_INDEX]
        )

        # Step 3: 计算 reconstruction loss
        b, m, n, _ = x.shape
        gt_latents = x.clone().detach().view(b, m * n, -1)
        orders = self.mar.sample_orders(bsz=b, seq_len=m*n)
        mask = self.mar.random_masking(x.flatten(1, 2), orders)
        x_enc = self.forward_mae_encoder(x, mask,
                                        inputs_embeds=inputs_embeds,
                                        attention_mask=attention_mask)
        z = self.mar.forward_mae_decoder(x_enc, mask, image_shape=(m, n), x_con=x_con)
        rec_loss = self.mar.forward_loss(z=z, target=gt_latents, mask=mask)

        # Step 4: Contrastive loss between repeat and edit
        # 假设 batch 是偶数,按 (repeat, edit) 对排列
        z_src_flat = z_src.mean(dim=1)  # [B, D] 全局池化
        z_src_flat = F.normalize(z_src_flat, dim=-1)

        repeat_z = z_src_flat[::2]  # even index
        edit_z = z_src_flat[1::2]   # odd index

        logits = torch.matmul(edit_z, repeat_z.T) / 0.07  # [B, B]
        labels = torch.arange(logits.size(0), device=logits.device)
        contrastive_loss = F.cross_entropy(logits, labels)

        return rec_loss + self.loss_weights.get("contrastive") * contrastive_loss

    def image_edit_loss(self, data_dict):
        # Multi-turn editing is also supported
        x_src = data_dict['pixel_values_src'].to(dtype=self.dtype, device=self.device)
        x = data_dict['pixel_values'].to(dtype=self.dtype, device=self.device)
        # print_log(f"[DEBUG] x_src.shape = {x_src.shape}, x.shape = {x.shape}")

        # assert len(x_src) >= len(x)
        x_cat = torch.cat([x_src, x], dim=0)
        x_src, x = self.encode(x_cat).split([len(x_src), len(x)], dim=0)

        # Prepare context, including source images and instructions
        attention_mask = data_dict['attention_mask'].to(self.device)
        input_ids = data_dict['input_ids'].to(self.device)

        x_con, z_src = self.extract_visual_feature(x_src)
        if self.grad_scale is not None:
            z_src = _ScaleGradient.apply(z_src, self.grad_scale)
            x_con = _ScaleGradient.apply(x_con, self.grad_scale)

        inputs_embeds = z_src.new_zeros(*input_ids.shape, self.llm.config.hidden_size)

        self.tokenizer.add_tokens(["<image>"], special_tokens=True)

        IMAGE_TOKEN_INDEX = self.tokenizer.convert_tokens_to_ids("<image>")
        # print("tokenizer idx in skywork_unipic_dev=", self.tokenizer.convert_tokens_to_ids("<image>"))

        inputs_embeds[input_ids == IMAGE_TOKEN_INDEX] = z_src.flatten(0, 1)
        inputs_embeds[input_ids != IMAGE_TOKEN_INDEX] = self.llm.get_input_embeddings()(
            input_ids[input_ids != IMAGE_TOKEN_INDEX]
        )

        # --------------------------------------------------
        # 3. MAE-style 重建
        # --------------------------------------------------

        b, m, n, _ = x.shape
        gt_latents = x.clone().detach().view(b, m * n, -1)
        orders = self.mar.sample_orders(bsz=b, seq_len=m*n)
        mask = self.mar.random_masking(x.flatten(1, 2), orders)
        x_enc = self.forward_mae_encoder(x, mask,
                                         inputs_embeds=inputs_embeds,
                                         attention_mask=attention_mask)
        z = self.mar.forward_mae_decoder(x_enc, mask, image_shape=(m, n), x_con=x_con)

        loss = self.mar.forward_loss(z=z, target=gt_latents, mask=mask)
        return loss



    def forward(self, data, data_samples=None, mode='loss'):
        if mode == 'loss':
            return self.compute_loss(data_dict=data)
        else:
            raise NotImplementedError

    def compute_loss(self, data_dict):
        losses = {}
        for data_type, batch_data in data_dict.items():
            if 'text2image' in data_type:
                loss = self.text2image_loss(batch_data)
            elif 'image2text' in data_type:
                loss = self.image2text_loss(batch_data)
            elif 'image_edit' in data_type:
                loss = self.image_edit_loss(batch_data)
            else:
                raise NotImplementedError(f"Unknown data_type: {data_type}")
            weight = self.loss_weights.get(data_type, 1.0)
            losses[f'loss_{data_type}'] = loss * weight
        return losses