Spaces:
dreroc
/
Running on Zero

File size: 13,559 Bytes
ea88892
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
import torch
import math
import numpy as np
import torch.nn as nn
import contextlib
from einops import rearrange
from transformers.cache_utils import DynamicCache
from src.builder import BUILDER
from tqdm import tqdm
from torch.nn.utils.rnn import pad_sequence
from transformers.integrations.deepspeed import (
    is_deepspeed_zero3_enabled,
    set_hf_deepspeed_config,
    unset_hf_deepspeed_config, 
    deepspeed_config
)

@contextlib.contextmanager
def temporarily_disable_deepspeed_zero3():
    if is_deepspeed_zero3_enabled():
        config = deepspeed_config()
        print(f'[DEBUG] ds config={config}')
        unset_hf_deepspeed_config()
        yield
        set_hf_deepspeed_config(config)
    else:
        yield



def build_mlp(hidden_size, projector_dim, z_dim):
    return nn.Sequential(
        nn.Linear(hidden_size, projector_dim),
        nn.SiLU(),
        nn.Linear(projector_dim, z_dim),)


def mask_by_order(mask_len, order, bsz, seq_len):
    masking = torch.zeros(bsz, seq_len, device=order.device)
    masking = torch.scatter(masking, dim=-1, index=order[:, :mask_len.long()],
                            src=torch.ones(bsz, seq_len, device=order.device)).bool()
    return masking


class SkyworkUnipic(nn.Module):
    def __init__(self,
                 vae,
                 vae_scale,
                 llm,
                 mar,
                 tokenizer,
                 prompt_template):
        super().__init__()
        with temporarily_disable_deepspeed_zero3():
            # VAE
            self.vae = BUILDER.build(vae)
            self.vae.requires_grad_(False)
            self.vae_scale = vae_scale

            # LLM
            self.llm = BUILDER.build(llm)
        self.tokenizer = BUILDER.build(tokenizer)
        self.prompt_template = prompt_template

        self.tokenizer.add_tokens(["<image>"], special_tokens=True)
        image_token_idx = self.tokenizer.convert_tokens_to_ids("<image>")
        print(f"Registered <image> token at index {image_token_idx}")

        # MAR
        self.mar = BUILDER.build(mar)
        # projection layers
        self.proj_in = build_mlp(hidden_size=self.mar.encoder_embed_dim,
                                 projector_dim=self.llm.config.hidden_size,
                                 z_dim=self.llm.config.hidden_size)
        self.proj_out = build_mlp(hidden_size=self.llm.config.hidden_size,
                                  projector_dim=self.llm.config.hidden_size,
                                  z_dim=self.mar.encoder_embed_dim)


    @property
    def llm_model(self):
        return self.llm.model

    @property
    def device(self):
        return self.llm.device

    @property
    def dtype(self):
        return self.llm.dtype

    @property
    def gen_seq_len(self):
        return self.mar.seq_len

    @property
    def token_embed_dim(self):
        return self.vae.embed_dim * (self.mar.patch_size ** 2)

    @torch.no_grad()
    def encode(self, x):
        posterior = self.vae.encode(x)
        z = posterior.mode().mul_(self.vae_scale)
        z = rearrange(z, 'b c (m p) (n q) -> b m n (c p q)',
                      p=self.mar.patch_size, q=self.mar.patch_size)

        return z

    @torch.no_grad()
    def decode(self, z):
        z /= self.vae_scale
        z = rearrange(z, 'b m n (c p q) -> b c (m p) (n q)',
                      p=self.mar.patch_size, q=self.mar.patch_size)

        x = self.vae.decode(z)
        return x

    def prepare_forward_input(self,
                              x,
                              inputs_embeds=None,
                              input_ids=None,
                              attention_mask=None,
                              past_key_values=None):
        b, l, _ = x.shape
        attention_mask = attention_mask.to(device=self.device, dtype=torch.bool)
        attention_mask = torch.cat([
            attention_mask, attention_mask.new_ones(b, l)
        ], dim=1)
        position_ids = torch.cumsum(attention_mask, dim=1) - 1
        position_ids[position_ids < 0] = 0

        # import pdb; pdb.set_trace()

        # prepare context
        if past_key_values is not None:
            inputs_embeds = x
            position_ids = position_ids[:, -l:]
        else:
            if inputs_embeds is None:
                input_ids = input_ids.to(self.device)
                inputs_embeds = self.llm.get_input_embeddings()(input_ids)
            inputs_embeds = torch.cat([inputs_embeds, x], dim=1)

        return dict(inputs_embeds=inputs_embeds,
                    attention_mask=attention_mask,
                    position_ids=position_ids,
                    past_key_values=past_key_values)

    def extract_visual_feature(self, x, mask=None, detach=False):
        b, m, n, _ = x.shape
        x = x.view(b, m*n, -1)
        # x: b mn c
        if mask is None:
            mask = torch.zeros_like(x[..., 0])
        null_embeds = self.mar.fake_latent.expand(x.shape[0], -1)
        x_enc = self.mar.forward_mae_encoder(x, mask, null_embeds, image_shape=(m, n))

        z_enc = self.proj_in(x_enc)
        # Move buffers to the end of the image sequence
        z_enc = torch.cat([
            z_enc[:, self.mar.buffer_size:],
            z_enc[:, :self.mar.buffer_size]], dim=1)

        if detach:
            x_enc = x_enc.detach()
            z_enc = z_enc.detach()

        return x_enc, z_enc

    def vae_latent_to_decoder_feature(self, z_src_latent):
        """
        Returns:
        x_con     [B, buf_sz + m*n, enc_dim]   for the MAE decoder
        z_src_buf [B, buf_sz + m*n, llm_dim]   to scatter into <image> tokens
        """
        B, m, n, token_dim = z_src_latent.shape
        num_patches = m * n
        enc_dim  = self.mar.encoder_embed_dim      # e.g. 1280
        llm_dim  = self.llm.config.hidden_size     # e.g. 1536
        buf_sz   = self.mar.buffer_size            # e.g.   64

        # 1) flatten patches → [B,4096,token_dim]
        patch_tokens = z_src_latent.view(B, num_patches, token_dim)

        # 2) project to encoder dim → [B,4096,enc_dim]
        z_enc = self.mar.z_proj(patch_tokens)
        z_enc = self.mar.z_proj_ln(z_enc)

        # (optional) add encoder pos embed for image part only
        full_pos = self.mar.get_encoder_pos_embed(h=m, w=n)  # [1, buf_sz+4096, enc_dim]
        pos_img  = full_pos[:, buf_sz:]                     # [1,4096,enc_dim]
        z_enc = z_enc + pos_img

        # 3) build x_con for MAE decoder: **one** buffer pad + image tokens
        buf_enc = torch.zeros(B, buf_sz, enc_dim,
                            device=z_enc.device, dtype=z_enc.dtype)
        x_con = torch.cat([buf_enc, z_enc], dim=1)           # [B,4160,enc_dim]

        # 4) build z_src_buf for LLM: **project the exact same** x_con, then rotate buffer→end
        z_proj_llm = self.proj_in(x_con)                     # [B,4160,llm_dim]
        # rotate: take image portion then buffer portion
        z_src_buf = torch.cat([
            z_proj_llm[:, buf_sz:],  # [B,4096,llm_dim]
            z_proj_llm[:, :buf_sz]   # [B,  64,llm_dim]
        ], dim=1)                                            # [B,4160,llm_dim]

        return x_con, z_src_buf

    def forward_mae_encoder(self, x, mask, detach=False, **context):
        b, m, n, _ = x.shape
        x_enc, z_enc = self.extract_visual_feature(x, mask=mask, detach=detach)
        inputs = self.prepare_forward_input(x=z_enc, **context)
        output = self.llm_model(**inputs, return_dict=True)

        z_llm = output.last_hidden_state[:, -z_enc.shape[1]:]

        # move buffers back to the start of the image sequence
        z_llm = torch.cat([
            z_llm[:, -self.mar.buffer_size:],
            z_llm[:, :-self.mar.buffer_size]], dim=1)

        # residual learning
        x_enc = x_enc + self.proj_out(z_llm)

        return x_enc

    @staticmethod
    def curtail_cache(past_key_values, cur_len):
        for past_key_values_ in past_key_values:
            keys, values = past_key_values_
            keys.data = keys.data[:, :, :cur_len]
            values.data = values.data[:, :, :cur_len]

    @torch.no_grad()
    def prepare_text_conditions(self, prompt, cfg_prompt='Generate an image.'):
        all_prompts = [self.prompt_template['INSTRUCTION'].format(input=prompt),
                       self.prompt_template['INSTRUCTION'].format(input=cfg_prompt)]

        
        input_ids = [self.tokenizer.encode(p, add_special_tokens=True, return_tensors='pt')[0]
                     for p in all_prompts]
        valid_lens = [len(input_ids_) for input_ids_ in input_ids]
        input_ids = pad_sequence(input_ids, batch_first=True,
                                 padding_value=self.tokenizer.eos_token_id)
        attention_mask = torch.zeros_like(input_ids).bool()
        for i in range(len(input_ids)):
            attention_mask[i, :valid_lens[i]] = True

        return dict(input_ids=input_ids.to(self.device),
                    attention_mask=attention_mask.to(self.device))

    @torch.no_grad()
    def sample(self,
               input_ids=None, inputs_embeds=None,
               attention_mask=None, num_iter=64, cfg=1.0, cfg_schedule="constant", temperature=1.0,
               progress=False, mask=None, past_key_values=None, image_shape=None, x_con=None, **kwargs):
        if inputs_embeds is None and input_ids is not None:
            inputs_embeds = self.llm.get_input_embeddings()(input_ids)

        bsz = attention_mask.shape[0]
        if cfg != 1.0:
            assert bsz % 2 == 0

        if image_shape is None:
            m = n = int(self.gen_seq_len ** 0.5)
        else:
            m, n = image_shape

        if mask is None:
            mask = torch.ones(bsz, m*n, device=self.device, dtype=self.dtype)
        else:
            mask = mask.view(bsz, m*n)
        tokens = torch.zeros(bsz, m*n, self.token_embed_dim,
                             device=self.device, dtype=self.dtype)
        orders = self.mar.sample_orders(bsz, seq_len=m*n)
        if cfg != 1.0:
            orders[bsz//2:] = orders[:bsz//2]

        indices = list(range(num_iter))
        if progress:
            indices = tqdm(indices)

        # past key values can be prepared outside (usually in multi-turn editing)
        if past_key_values is None:
            output = self.llm_model(inputs_embeds=inputs_embeds,
                                    attention_mask=None,
                                    position_ids=None,
                                    past_key_values=DynamicCache.from_legacy_cache(),
                                    return_dict=True,
                                    use_cache=True)
            past_key_values = output.past_key_values

        # generate latents
        for step in indices:
            cur_tokens = tokens.clone()
            x_enc = self.forward_mae_encoder(tokens.view(bsz, m, n, -1),
                                             mask.to(self.dtype),
                                             past_key_values=past_key_values,
                                             # inputs_embeds=inputs_embeds,
                                             attention_mask=attention_mask)
            # import pdb; pdb.set_trace()
            self.curtail_cache(past_key_values, inputs_embeds.shape[1])
            # import pdb; pdb.set_trace()

            z = self.mar.forward_mae_decoder(x_enc, mask.to(self.dtype), image_shape=(m, n), x_con=x_con)

            # mask ratio for the next round, following MaskGIT and MAGE.
            mask_ratio = np.cos(math.pi / 2. * (step + 1) / num_iter)
            mask_len = torch.Tensor([np.floor(m*n * mask_ratio)]).to(self.device)

            # masks out at least one for the next iteration
            mask_len = torch.maximum(torch.Tensor([1]).to(self.device),
                                     torch.minimum(torch.sum(mask, dim=-1, keepdims=True) - 1, mask_len))

            # get masking for next iteration and locations to be predicted in this iteration
            mask_next = mask_by_order(mask_len[0], orders, bsz, m*n).to(self.device)
            if cfg != 1.0:
                mask_next[bsz//2:] = mask_next[:bsz//2]
            if step >= num_iter - 1:
                mask_to_pred = mask[:bsz].bool()
            else:
                mask_to_pred = torch.logical_xor(mask[:bsz].bool(), mask_next.bool())
            mask = mask_next
            # if not cfg == 1.0:
            #     mask_to_pred = torch.cat([mask_to_pred, mask_to_pred], dim=0)

            # sample token latents for this step
            z = z[mask_to_pred.nonzero(as_tuple=True)]
            # cfg schedule follow Muse
            if cfg_schedule == "linear":
                cfg_iter = 1 + (cfg - 1) * (m*n - mask_len[0]) / (m*n)
            elif cfg_schedule == "constant":
                cfg_iter = cfg
            else:
                raise NotImplementedError
            sampled_token_latent = self.mar.diffloss.sample(z, temperature, cfg_iter).to(self.dtype)
            # if not cfg == 1.0:
            #     sampled_token_latent, _ = sampled_token_latent.chunk(2, dim=0)  # Remove null class samples
            #     mask_to_pred, _ = mask_to_pred.chunk(2, dim=0)

            cur_tokens[mask_to_pred.nonzero(as_tuple=True)] = sampled_token_latent
            if cfg != 1.0:
                cur_tokens[bsz//2:] = cur_tokens[:bsz//2]
            tokens = cur_tokens.clone()

        pred = self.decode(tokens.view(bsz, m, n, -1))

        if cfg != 1.0:
            pred = pred[:bsz//2]
        return pred