Spaces:
dreroc
/
Running on Zero

UniPic / src /datasets /understanding /caption_datasets.py
yichenchenchen's picture
Upload 25 files
ea88892 verified
from torch.utils.data import Dataset
from PIL import Image
import os
import io
import json
import random
import torch
import numpy as np
from einops import rearrange
try:
from aoss_client.client import Client
except:
try:
from petrel_client.client import Client
except:
Client = None
from glob import glob
from xtuner.registry import BUILDER
from xtuner.dataset.utils import expand2square
from src.datasets.utils import crop2square, encode_fn
from xtuner.utils import DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX
from src.datasets.understanding.caption_prompts import dense_prompts, short_prompts
from typing import List, Dict, Any, Optional,Callable,Tuple
@BUILDER.register_module()
class CaptionDataset(Dataset):
def __init__(self,
data_path,
local_folder,
image_size,
ceph_folder=None,
ceph_config=None,
tokenizer=None,
template_map_fn=None,
max_length=2048,
min_image_size=80,
image_length=256,
pad_image=True,
brief=False,
cap_folder=None,
cap_source='caption',
):
super().__init__()
self.data_path = data_path
self._load_data(data_path)
self.local_folder = local_folder
self.cap_folder = local_folder if cap_folder is None else cap_folder
self.cap_source = cap_source
self.image_size = image_size
self.tokenizer = BUILDER.build(tokenizer)
self.prompt_template = template_map_fn['template']
self.template_map_fn = BUILDER.build(template_map_fn)
self.max_length = max_length
self.image_length = image_length
self.pad_image = pad_image
self.min_image_size = min_image_size
self.FILE_CLIENT = None
self.ceph_folder = ceph_folder
self.ceph_config = ceph_config
self.use_ceph = ((Client is not None) and (ceph_folder is not None)
and (ceph_config is not None) and os.path.exists(ceph_config))
self.brief = brief
self.caption_prompts = short_prompts if self.brief else dense_prompts
def _load_data(self, data_path: str): # image path and annotation path are saved in a json file
if data_path.endswith('.json'):
with open(data_path, 'r') as f:
self.data_list = json.load(f)
else:
json_files = glob(f"{data_path}/*.json")
data_list = []
for json_file in json_files:
with open(json_file, 'r') as f:
data_list += json.load(f)
self.data_list = data_list
print(f"Load {len(self.data_list)} data samples from {data_path}", flush=True)
def __len__(self):
return len(self.data_list)
def _read_ceph(self, ceph_path):
if self.FILE_CLIENT is None:
self.FILE_CLIENT = Client(self.ceph_config)
data_bytes = self.FILE_CLIENT.get(ceph_path)
return io.BytesIO(data_bytes)
def _read_image(self, image_file):
if self.use_ceph:
image = Image.open(
self._read_ceph(
os.path.join(self.ceph_folder, image_file)
)
)
else:
image = Image.open(
os.path.join(self.local_folder, image_file)
)
assert image.width > self.min_image_size and image.height > self.min_image_size, f"Image: {image.size}"
assert image.width / image.height > 0.1, f"Image: {image.size}"
assert image.width / image.height < 10, f"Image: {image.size}"
return image.convert('RGB')
def _read_json(self, annotation_file):
if self.use_ceph:
annotation = json.load(
self._read_ceph(
os.path.join(self.ceph_folder, annotation_file)
)
)
else:
with open(os.path.join(self.local_folder, annotation_file), 'r') as f:
annotation = json.load(f)
return annotation
def _process_image(self, image):
data = dict()
if self.pad_image:
image = expand2square(image, (127, 127, 127))
else:
image = crop2square(image)
image = image.resize(size=(self.image_size, self.image_size))
pixel_values = torch.from_numpy(np.array(image)).float()
pixel_values = pixel_values / 255
pixel_values = 2 * pixel_values - 1
pixel_values = rearrange(pixel_values, 'h w c -> c h w')
data.update(pixel_values=pixel_values)
return data
def _process_text(self, text):
assert DEFAULT_IMAGE_TOKEN not in text, text
data_dict = dict(conversation=[{'input': f"{DEFAULT_IMAGE_TOKEN}\n{random.choice(self.caption_prompts)}",
'output': text.strip()}])
data_dict.update(self.template_map_fn(data_dict))
data_dict.update(encode_fn(data_dict, self.tokenizer, self.max_length,
self.image_length, True, True))
assert (torch.tensor(data_dict['input_ids']).long() == IMAGE_TOKEN_INDEX).sum() == self.image_length, \
"Error in image format"
data_dict['type'] = 'image2text'
return data_dict
def _retry(self):
return self.__getitem__(random.choice(range(self.__len__())))
def __getitem__(self, idx):
try:
data_sample = self.data_list[idx]
image = self._read_image(data_sample['image']).convert('RGB')
data = self._process_image(image)
del image
with open(f"{self.cap_folder}/{data_sample['annotation']}", 'r') as f:
caption = json.load(f)[self.cap_source]
data.update(self._process_text(caption))
data.update(image_dir=self.local_folder, image_file=data_sample['image'])
return data
except Exception as e:
print(f"Error when reading {self.data_path}:{data_sample['image']}: {e}", flush=True)
return self._retry()
@BUILDER.register_module()
class VqaDataset(Dataset):
"""Generic VQA / multimodal conversation dataset with robust IO & validation."""
# ---------- 初始化 ----------
def __init__(
self,
data_path: str,
tokenizer, # ← 必填参数,放在最前
template_map_fn: Callable, # ← 必填参数,放在最前
img_prefix: Optional[str] = None,
image_size: int = 512,
max_length: int = 2048,
image_length: int = 1089,
pad_image: bool = True,
min_image_size: int = 80,
image_token_patterns: Tuple[str, ...] = ('<image>', '[image]', '<img>'),
max_retry: int = 5,
):
super().__init__()
self.img_prefix = img_prefix.rstrip("/") if img_prefix else None
self.image_size = image_size
self.max_length = max_length
self.image_length = image_length
self.pad_image = pad_image
self.min_image_size = min_image_size
self.image_token_patterns = list(image_token_patterns)
self.max_retry = max_retry
# 构建 tokenizer 与模板
self.tokenizer = BUILDER.build(tokenizer)
self.template_map_fn = BUILDER.build(template_map_fn) if template_map_fn else None
# 读取 jsonl / 目录
self.data_list = self._load_jsonl_list(data_path)
print(f"Loaded {len(self.data_list)} samples from {data_path}")
# ---------- 数据加载辅助 ----------
@staticmethod
def _load_jsonl_list(path: str) -> List[Dict[str, Any]]:
data: List[Dict[str, Any]] = []
if path.endswith(".jsonl"):
files = [path]
else:
files = sorted(glob(os.path.join(path, "**/*.jsonl"), recursive=True))
for file in files:
with open(file, "r") as f:
for line in f:
line = line.strip()
if line:
data.append(json.loads(line))
return data
# ---------- 基本接口 ----------
def __len__(self) -> int:
return len(self.data_list)
# ---------- 图像处理 ----------
def _get_image_path(self, img_file: str) -> str:
"""保持绝对路径不变,否则加前缀"""
return img_file if os.path.isabs(img_file) else os.path.join(self.img_prefix, img_file)
def _read_image(self, img_file: str) -> Image.Image:
img_path = self._get_image_path(img_file)
try:
image = Image.open(img_path).convert("RGB")
except Exception as e:
raise FileNotFoundError(f"Cannot open image: {img_path} ({e})")
w, h = image.size
if w < self.min_image_size or h < self.min_image_size:
raise ValueError(f"Image too small: {img_path} ({w}x{h})")
ratio = w / h
if not (0.1 < ratio < 10):
raise ValueError(f"Odd aspect ratio ({ratio:.3f}) for {img_path}")
# pad / crop
image = expand2square(image, (127, 127, 127)) if self.pad_image else crop2square(image)
image = image.resize((self.image_size, self.image_size), resample=Image.BICUBIC)
px = torch.from_numpy(np.asarray(image)).float() / 255.0
px = 2 * px - 1.0
px = rearrange(px, "h w c -> c h w") # CHW
return px
# ---------- 对话处理 ----------
def _replace_image_tokens(self, txt: str) -> str:
for pat in self.image_token_patterns:
if pat in txt:
txt = txt.replace(pat, str(self.image_token_idx))
return txt
def _format_conversation(self, turns: List[Dict[str, str]]) -> Dict[str, Any]:
"""
将多个 human/gpt 轮次合并为若干 {'input':..., 'output':...} 对。
遵循:human → gpt 为一对;若缺失 reply,用占位符。
"""
pairs = []
for i in range(0, len(turns), 2): # 每两回合一对,human 和 gpt
if i + 1 < len(turns): # 确保 gpt turn 存在
human_turn = turns[i]
gpt_turn = turns[i + 1]
human_content = human_turn.get("value", "").strip()
gpt_content = gpt_turn.get("value", "").strip()
if not human_content.lstrip().startswith("<image>"):
human_content = f"<image>\n{human_content}"
if not human_content or not gpt_content: # 如果某一方没有内容,跳过该对话
continue
# 只在 human turn 中加入图像 token
# human_content = self._replace_image_tokens(human_content) # 替换成 image_token_idx
pairs.append({"input": human_content, "output": gpt_content})
data_dict = {"conversation": pairs}
data_dict_ori = data_dict
if self.template_map_fn:
data_dict = self.template_map_fn(data_dict)
# 对输入进行编码
data_dict = encode_fn(
data_dict,
self.tokenizer,
self.max_length,
self.image_length,
input_ids_with_output=True,
with_image_token=True,
# 额外把 image_token_idx 传进去
image_token_idx=self.image_token_idx
)
# 动态校验:确保至少出现一次图像 token
img_tokens = (torch.tensor(data_dict["input_ids"]) == self.image_token_idx).sum().item()
# 使用f-string优化打印格式,确保输出类型安全
print(f"[校验日志] input_ids长度: {len(data_dict['input_ids'])}, 图像token出现次数: {img_tokens}\n")
# print(f"[校验日志] input_ids: {data_dict.get('input_ids', '未设置')}\n")
if img_tokens != 1088:
print(f"[异常对话]:{data_dict_ori}")
data_dict["type"] = "image2text" # 设置数据类型为 image2text
return data_dict
# ---------- 主接口 ----------
def __getitem__(self, idx: int) -> Dict[str, Any]:
for attempt in range(self.max_retry):
try:
sample = self.data_list[idx]
img_tensor = self._read_image(sample["image"])
text_data = self._format_conversation(sample.get("conversations", []))
return {
**text_data,
"pixel_values": img_tensor,
"image_file": sample["image"],
}
except Exception as e:
print(f"[Retry {attempt+1}/{self.max_retry}] idx={idx} error: {e}")
idx = random.randint(0, len(self) - 1)
# 若多次失败则抛异常
raise RuntimeError(f"Failed to fetch valid sample after {self.max_retry} retries.")