from torch.utils.data import Dataset from PIL import Image import os import json import random import torch import numpy as np from einops import rearrange from xtuner.registry import BUILDER from mmengine.registry import DATASETS from src.datasets.utils import crop2square from glob import glob from typing import List, Dict, Any, Optional import mmap import struct from src.datasets.utils import crop2square, encode_fn from xtuner.utils import DEFAULT_IMAGE_TOKEN @BUILDER.register_module() class Text2ImageDataset(Dataset): def __init__(self, data_path, local_folder, image_size, unconditional=0.1, tokenizer=None, prompt_template=None, max_length=1024, crop_image=True, cap_source='caption', ): super().__init__() self.data_path = data_path self._load_data(data_path) self.unconditional = unconditional self.local_folder = local_folder self.cap_source = cap_source self.image_size = image_size self.tokenizer = BUILDER.build(tokenizer) self.prompt_template = prompt_template self.max_length = max_length self.crop_image = crop_image self.metainfo = {'task': 'unified'} self.tokenizer.add_tokens([""], special_tokens=True) def _load_data(self, data_path): with open(data_path, 'r') as f: self.data_list = json.load(f) print(f"Load {len(self.data_list)} data samples from {data_path}", flush=True) def full_init(self): """Dummy full_init to be compatible with MMEngine ConcatDataset.""" return def __len__(self): return len(self.data_list) def _read_image(self, image_file): image = Image.open(os.path.join(self.local_folder, image_file)) assert image.width > 8 and image.height > 8, f"Image: {image.size}" assert image.width / image.height > 0.1, f"Image: {image.size}" assert image.width / image.height < 10, f"Image: {image.size}" return image def _process_text(self, text): if random.uniform(0, 1) < self.unconditional: prompt = "Generate an image." else: prompt = f"Generate an image: {text.strip()}" prompt = self.prompt_template['INSTRUCTION'].format(input=prompt) input_ids = self.tokenizer.encode(prompt, add_special_tokens=True, return_tensors='pt')[0] return dict(input_ids=input_ids[:self.max_length]) def _process_image(self, image): data = dict() if self.crop_image: image = crop2square(image) else: target_size = max(image.size) image = image.resize(size=(target_size, target_size)) image = image.resize(size=(self.image_size, self.image_size)) pixel_values = torch.from_numpy(np.array(image)).float() pixel_values = pixel_values / 255 pixel_values = 2 * pixel_values - 1 pixel_values = rearrange(pixel_values, 'h w c -> c h w') data.update(pixel_values=pixel_values) return data def _retry(self): return self.__getitem__(random.choice(range(self.__len__()))) def __getitem__(self, idx): try: data_sample = self.data_list[idx] image = self._read_image(data_sample['image']).convert('RGB') caption = data_sample[self.cap_source] data = self._process_image(image) data.update(self._process_text(caption)) data.update(type='text2image') return data except Exception as e: print(f"Error when reading {self.data_path}:{self.data_list[idx]}: {e}", flush=True) return self._retry() @DATASETS.register_module() @BUILDER.register_module() class LargeText2ImageDataset(Text2ImageDataset): # self.data_list only contains paths of images and captions def __init__(self, cap_folder=None, *args, **kwargs): super().__init__(*args, **kwargs) self.cap_folder = self.local_folder if cap_folder is None else cap_folder def _load_data(self, data_path): # image path and annotation path are saved in a json file if data_path.endswith(".json"): with open(data_path, 'r') as f: self.data_list = json.load(f) else: self.data_list = [] json_files = glob(f'{data_path}/*.json') for json_file in json_files: with open(json_file, 'r') as f: self.data_list += json.load(f) print(f"Load {len(self.data_list)} data samples from {data_path}", flush=True) def __getitem__(self, idx): try: data_sample = self.data_list[idx] image = self._read_image(data_sample['image']).convert('RGB') with open(f"{self.cap_folder}/{data_sample['annotation']}", 'r') as f: caption = json.load(f)[self.cap_source] data = self._process_image(image) data.update(self._process_text(caption)) data.update(type='text2image') return data except Exception as e: print(f"Error when reading {self.data_path}:{data_sample}: {e}", flush=True) return self._retry() @DATASETS.register_module() @BUILDER.register_module() class MMapT2IDataset(Dataset): """ Map-style Text2Image Dataset with mmap-based random access. 一次性在 __init__ 打开 mmap;__getitem__ O(1) 读取指定行。 """ def __init__( self, jsonl_path: str, idx_path: str, image_size: int, tokenizer: Optional[Dict] = None, template_map_fn: Optional[Dict] = None, cap_source: str = "prompt", max_length: int = 2048, image_length: int = 512, unconditional: float = 0.01, crop_image: bool = False, ): super().__init__() # ---------- 基础参数 ---------- self.jsonl_path = jsonl_path self.image_size = image_size self.cap_source = cap_source self.max_length = max_length self.unconditional = unconditional self.crop_image = crop_image # ---------- tokenizer / template ---------- self.tokenizer = BUILDER.build(tokenizer) self.template_map_fn = template_map_fn # ---------- mmap 加载 ---------- self._open_mmap(jsonl_path, idx_path) self.metainfo = {'task' :'unified'} # ===== mmap & index ===== def _open_mmap(self, jsonl_path: str, idx_path: str): # mmap 文件 self._jsonl_fp = open(jsonl_path, "r+b") self._mm = mmap.mmap(self._jsonl_fp.fileno(), 0, access=mmap.ACCESS_READ) # 读取 offset 索引 with open(idx_path, "rb") as f: nlines = struct.unpack(" int: return self._offsets.size def full_init(self): """Dummy full_init to be compatible with MMEngine ConcatDataset.""" return def _read_line(self, idx: int) -> str: off = int(self._offsets[idx]) self._mm.seek(off) return self._mm.readline().decode("utf-8") # ===== 核心处理 ===== def _load_image(self, path: str) -> torch.Tensor: img = Image.open(path).convert("RGB") # 预处理:裁剪成方形 / pad if self.crop_image: img = crop2square(img) else: target_size = max(img.size) img = img.resize((target_size, target_size)) img = img.resize((self.image_size, self.image_size)) arr = np.asarray(img, dtype=np.uint8) # HWC uint8 px = torch.as_tensor(arr).float() / 255.0 # 0-1 px = 2 * px - 1 # -1 ~ 1 return rearrange(px, "h w c -> c h w") # CHW def _build_prompt(self, caption: str) -> torch.Tensor: if random.random() < self.unconditional: caption = "Generate an image." else: caption = f"Generate an image: {caption.strip()}" instr = self.template_map_fn["INSTRUCTION"].format(input=caption) ids = self.tokenizer.encode( instr, add_special_tokens=True, return_tensors="pt" )[0][: self.max_length] return ids def __getitem__(self, idx: int) -> Dict[str, Any]: # 1) 取 jsonl 行 sample = json.loads(self._read_line(idx)) # 2) 加载 & 处理图像 pixel_values = self._load_image(sample["image"]) # 3) 处理文本 caption = sample.get(self.cap_source, "") input_ids = self._build_prompt(caption) # 4) 打包 data = dict( pixel_values=pixel_values, input_ids=input_ids, type="text2image", image_file=sample["image"], idx=idx, ) return data @DATASETS.register_module() @BUILDER.register_module() class ReconstructDataset(Dataset): def __init__(self, data_path: str, image_size: int, tokenizer=None, prompt_template=None, cap_source: str = "prompt", max_length: int = 8192, crop_image: bool = True, img_prefix: str = ""): super().__init__() self.image_size = image_size self.tokenizer = BUILDER.build(tokenizer) self.tokenizer.add_tokens([""], special_tokens=True) self.prompt_template = prompt_template self.cap_source = cap_source self.max_length = max_length self.crop_image = crop_image self.img_prefix = img_prefix self._load_data(data_path) m = n = self.image_size // 16 self.image_token_repeat = m * n + 64 self.metainfo = {'task': 'unified'} def full_init(self): """Dummy full_init to be compatible with MMEngine ConcatDataset.""" return def _load_data(self, path): with open(path) as f: self.data_list = [json.loads(l) for l in f] print(f"[I2ICaptionReconstructDataset] Loaded {len(self.data_list)} samples from {path}") def _add_prefix(self, rel): return os.path.join(self.img_prefix, rel.lstrip("/")) if self.img_prefix else rel def _read_image(self, path): img = Image.open(path).convert("RGB") assert img.width > 8 and img.height > 8 and 0.1 < img.width / img.height < 10 return img # ---------- preprocess ---------- def _process_image(self, img): img = crop2square(img) if self.crop_image else img.resize((max(img.size),)*2) img = img.resize((self.image_size, self.image_size)) px = torch.from_numpy(np.array(img)).float() / 255. px = 2 * px - 1 return rearrange(px, "h w c -> c h w") def _encode_prompt(self, text): # for bad_token in ["[IMAGE]", "", ""]: # text = text.replace(bad_token, "") text = "Repeat this image." prompt_in = f"\n{text.strip()}" prompt = self.prompt_template["INSTRUCTION"].format(input=prompt_in) prompt = prompt.replace("", "" * self.image_token_repeat) input_ids = self.tokenizer.encode(prompt, add_special_tokens=True, return_tensors="pt")[0] mask = (input_ids != self.tokenizer.pad_token_id).long() return input_ids[:self.max_length], mask[:self.max_length] def __len__(self): return len(self.data_list) def _retry(self): return self.__getitem__(random.randrange(len(self))) def __getitem__(self, idx): try: sample = self.data_list[idx] src_img = self._read_image(self._add_prefix(sample["image"])) tgt_img = src_img caption = sample[self.cap_source] px_src = self._process_image(src_img) px_tgt = self._process_image(tgt_img) input_ids, mask = self._encode_prompt(caption) return { "pixel_values_src": px_src, "pixel_values": px_tgt, "input_ids": input_ids, "attention_mask": mask, "type": "image_edit" } except Exception as e: print(f"[I2ICaptionReconstructDataset] Error @ {idx}: {e}") return self._retry() @DATASETS.register_module() @BUILDER.register_module() class UncondReconstructDataset(Dataset): def __init__(self, data_path: str, image_size: int, tokenizer=None, prompt_template=None, cap_source: str = "prompt", max_length: int = 8192, crop_image: bool = True, img_prefix: str = ""): super().__init__() self.image_size = image_size self.tokenizer = BUILDER.build(tokenizer) self.tokenizer.add_tokens([""], special_tokens=True) self.prompt_template = prompt_template self.max_length = max_length self.crop_image = crop_image self.img_prefix = img_prefix self.cap_source = cap_source self._load_data(data_path) # 计算 image token 展开数量 m = n = self.image_size // 16 self.image_token_repeat = m * n + 64 self.metainfo = {'task': 'unified'} def _load_data(self, path): with open(path) as f: self.data_list = [json.loads(l) for l in f] print(f"[I2IUncondReconstructDataset] Loaded {len(self.data_list)} samples from {path}") def _add_prefix(self, rel_path): return os.path.join(self.img_prefix, rel_path.lstrip("/")) if self.img_prefix else rel_path def full_init(self): """Dummy full_init to be compatible with MMEngine ConcatDataset.""" return def _read_image(self, path): image = Image.open(path).convert("RGB") assert image.width > 8 and image.height > 8 and 0.1 < image.width / image.height < 10 return image # ---------- preprocess ---------- def _process_image(self, img): img = crop2square(img) if self.crop_image else img.resize((max(img.size),)*2) img = img.resize((self.image_size, self.image_size)) px = torch.from_numpy(np.array(img)).float() / 255. px = 2 * px - 1 return rearrange(px, "h w c -> c h w") def __len__(self): return len(self.data_list) def _retry(self, max_tries=5): for _ in range(max_tries): try: return self.__getitem__(random.randrange(len(self))) except Exception: continue raise RuntimeError("Exceeded max retries in I2IUncondReconstructDataset") def __getitem__(self, idx): try: sample = self.data_list[idx] path = self._add_prefix(sample["image"]) img = self._read_image(path) px = self._process_image(img) # ==== 填入空文本 ==== input_ids = torch.zeros(0, dtype=torch.long) attention_mask = torch.zeros(0, dtype=torch.long) return { "pixel_values_src": px, "pixel_values": px.clone(), "type": "image_edit", "input_ids": input_ids, "attention_mask": attention_mask, # 重建任务不再输出 input_ids / attention_mask } except Exception as e: print(f"[I2IUncondReconstructDataset] Error @ {idx}: {e}") return self._retry() @DATASETS.register_module() @BUILDER.register_module() class Text2ImageJSONLDataset(Dataset): def __init__(self, data_path, image_size, tokenizer=None, prompt_template=None, cap_source='prompt', max_length=1024, unconditional=0.1, crop_image=True, ): super().__init__() self.data_path = data_path self._load_data(data_path) self.image_size = image_size self.tokenizer = BUILDER.build(tokenizer) self.tokenizer.add_tokens([""], special_tokens=True) self.prompt_template = prompt_template self.cap_source = cap_source self.max_length = max_length self.unconditional = unconditional self.crop_image = crop_image self.metainfo = {'task': 'unified'} def _load_data(self, data_path): self.data_list = [] with open(data_path, 'r') as f: for line in f: self.data_list.append(json.loads(line.strip())) print(f"Loaded {len(self.data_list)} samples from {data_path}") def full_init(self): """Dummy full_init for MMEngine ConcatDataset compatibility.""" pass def __len__(self): return len(self.data_list) def _read_image(self, image_file): image = Image.open(image_file).convert('RGB') assert image.width > 8 and image.height > 8 assert 0.1 < image.width / image.height < 10 return image def _process_image(self, image): if self.crop_image: image = crop2square(image) else: target_size = max(image.size) image = image.resize((target_size, target_size)) image = image.resize((self.image_size, self.image_size)) pixel_values = torch.from_numpy(np.array(image)).float() / 255.0 pixel_values = 2 * pixel_values - 1 # [-1, 1] pixel_values = rearrange(pixel_values, 'h w c -> c h w') return dict(pixel_values=pixel_values) def _process_text(self, text): if random.uniform(0, 1) < self.unconditional: text = "Generate an image." else: text = f"Generate an image: {text.strip()}" prompt = self.prompt_template['INSTRUCTION'].format(input=text) input_ids = self.tokenizer.encode(prompt, add_special_tokens=True, return_tensors='pt')[0] return dict(input_ids=input_ids[:self.max_length]) def _retry(self): return self.__getitem__(random.randint(0, len(self.data_list) - 1)) def __getitem__(self, idx): try: sample = self.data_list[idx] image = self._read_image(sample['image']) caption = sample[self.cap_source] data = self._process_image(image) data.update(self._process_text(caption)) data.update(type='text2image') return data except Exception as e: print(f"[JSONLDataset] Error reading sample #{idx}: {e}") return self._retry() # 纯文生图没有占位符的问题,下面编辑数据集需要考虑占位符 @DATASETS.register_module() @BUILDER.register_module() class ImageEditJSONLDataset(Dataset): """ Dataset for image editing, now decoupled from tokenization logic. """ def __init__(self, data_path: str, image_size: int, tokenizer=None, prompt_template=None, max_length: int = 8192, cap_source: str = "prompt", unconditional: float = 0, crop_image: bool = False, img_prefix: str = ""): super().__init__() self.data_path = data_path self.image_size = image_size self.tokenizer = BUILDER.build(tokenizer) self.prompt_template = prompt_template self.max_length = max_length self.cap_source = cap_source self.unconditional = unconditional self.crop_image = crop_image self.img_prefix = img_prefix self._load_data(data_path) # Calculate image token repetition length, consistent with inference. m = n = self.image_size // 16 self.image_token_repeat = m * n + 64 self.metainfo = {'task': 'unified'} self.tokenizer.add_tokens([""], special_tokens=True) self.image_token_idx = self.tokenizer.convert_tokens_to_ids("") print(f"Registered token at index {self.image_token_idx}") def _load_data(self, path): with open(path) as f: self.data_list = [json.loads(l) for l in f] print(f"[ImageEditJSONLDataset] Loaded {len(self.data_list)} samples from {path}") def full_init(self): """Dummy full_init for MMEngine ConcatDataset compatibility.""" pass def _add_prefix(self, rel_path): return os.path.join(self.img_prefix, rel_path.lstrip("/")) if self.img_prefix else rel_path def _read_image(self, path): path = path.replace("datasets_vlm02", "datasets_vlm") img = Image.open(path).convert("RGB") assert img.width > 8 and img.height > 8 and 0.1 < img.width / img.height < 10 return img def _process_image(self, img): img = crop2square(img) if self.crop_image else img.resize((max(img.size),) * 2) img = img.resize((self.image_size, self.image_size)) px = torch.from_numpy(np.array(img)).float() / 255. px = 2 * px - 1 return rearrange(px, "h w c -> c h w") # --- REFACTORED: This method now only prepares the raw prompt text --- def _prepare_prompt_text(self, raw_text: str): """Cleans text and handles unconditional generation.""" for bad_token in ["[IMAGE]", "", "", ""]: txt = raw_text.replace(bad_token, "") txt = txt.strip() if random.random() < self.unconditional: txt = "Edit this image." return txt def _retry(self): return self.__getitem__(random.randrange(len(self))) def __len__(self): return len(self.data_list) def __getitem__(self, idx): try: sample = self.data_list[idx] src_path, tgt_path = map(self._add_prefix, [sample["images"][0], sample["image"]]) src_img, tgt_img = map(self._read_image, [src_path, tgt_path]) px_src, px_tgt = map(self._process_image, [src_img, tgt_img]) # --- MODIFIED: Call the unified encode_fn --- # 1. Prepare the raw prompt string prompt_text = self._prepare_prompt_text(sample[self.cap_source]) # 2. Delegate all encoding and formatting to encode_fn encoded_text = encode_fn( example=prompt_text, tokenizer=self.tokenizer, prompt_template=self.prompt_template, max_length=self.max_length, image_length=self.image_token_repeat, image_token_idx=self.image_token_idx ) return { "pixel_values_src": px_src, "pixel_values": px_tgt, "input_ids": torch.tensor(encoded_text["input_ids"], dtype=torch.long), "attention_mask": torch.tensor(encoded_text["attention_mask"], dtype=torch.long), "type": "image_edit", } except Exception as e: print(f"[ImageEditJSONLDataset] Error @ {idx}: {e} from {self.data_path}") return self._retry()