import inspect from torch.optim import AdamW class CustomAdamW(AdamW): def __init__(self, params, weight_decay, *args, **kwargs): import pdb; pdb.set_trace() if isinstance(params, dict): params = [p for p in params.values() if p.requires_grad] else: params = [p for p in params if p.requires_grad] # create optim groups. Any parameters that is 2D will be weight decayed, otherwise no. # i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't. decay_params = [p for p in params if p.dim() >= 2] nodecay_params = [p for p in params if p.dim() < 2] optim_groups = [ {'params': decay_params, 'weight_decay': weight_decay}, {'params': nodecay_params, 'weight_decay': 0.0} ] num_decay_params = sum(p.numel() for p in decay_params) num_nodecay_params = sum(p.numel() for p in nodecay_params) print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters") print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters") # Create AdamW optimizer and use the fused version if it is available # fused_available = 'fused' in inspect.signature(AdamW).parameters # extra_args = dict(fused=True) if fused_available else dict() # print(f"using fused AdamW: {fused_available}") # kwargs.update(extra_args) super().__init__(params=optim_groups, *args, **kwargs)