Spaces:
Sleeping
Sleeping
Create app.py test version (small scale example)
Browse files
app.py
ADDED
|
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import glob
|
| 3 |
+
import pandas as pd
|
| 4 |
+
from PIL import Image
|
| 5 |
+
from itertools import islice
|
| 6 |
+
import earthview as ev
|
| 7 |
+
import gradio as gr
|
| 8 |
+
|
| 9 |
+
# this only gets the first file in the first shard - you can download more by editing this line
|
| 10 |
+
filename = os.path.join("dataset", "satellogic", "train-00000-of-00065.parquet")
|
| 11 |
+
# this returns an iterator for all files, not sorted
|
| 12 |
+
# filenames = glob.glob(os.path.join("dataset", "satellogic", "*.parquet"))
|
| 13 |
+
|
| 14 |
+
# loads a dataset with pandas, this loads a single file
|
| 15 |
+
# for larger datasets you want to use `dask` which is significantly faster,
|
| 16 |
+
# but I wanted to provide a simple version which only uses dependencies that have already been imported.
|
| 17 |
+
data = pd.read_parquet(filename)
|
| 18 |
+
|
| 19 |
+
# transforms a metadata sample to bounds and timestamps, handling revisits
|
| 20 |
+
def item_to_bounds_timestamps(sample):
|
| 21 |
+
# unpack metadata
|
| 22 |
+
bounds_list = sample["metadata"]["bounds"]
|
| 23 |
+
timestamp_list = sample["metadata"]["timestamp"]
|
| 24 |
+
# each sample contains nested metadata
|
| 25 |
+
bounds = []
|
| 26 |
+
timestamps = []
|
| 27 |
+
# return two flat lists
|
| 28 |
+
for b, t in zip(bounds_list, timestamp_list):
|
| 29 |
+
bounds.append(b)
|
| 30 |
+
timestamps.append(t)
|
| 31 |
+
return bounds, timestamps
|
| 32 |
+
|
| 33 |
+
# Create an empty list to store ratings
|
| 34 |
+
ratings = []
|
| 35 |
+
image_id = 0 # Initialize image ID counter
|
| 36 |
+
bounds = []
|
| 37 |
+
timestamps = []
|
| 38 |
+
|
| 39 |
+
# Limit the number of images to process for the test
|
| 40 |
+
num_images_to_process = 5
|
| 41 |
+
|
| 42 |
+
# Iterate through the samples, display, rate, and store info
|
| 43 |
+
data_iter = islice(data.iterrows(), num_images_to_process)
|
| 44 |
+
for index, sample in data_iter:
|
| 45 |
+
rgb = sample["rgb"]
|
| 46 |
+
bounds_sample, timestamps_sample = item_to_bounds_timestamps(sample)
|
| 47 |
+
# iterate through the RGB images (revisits)
|
| 48 |
+
for i, img in enumerate(rgb):
|
| 49 |
+
print("Image ID:", image_id)
|
| 50 |
+
display(img)
|
| 51 |
+
|
| 52 |
+
# Get the rating from the user
|
| 53 |
+
while True:
|
| 54 |
+
try:
|
| 55 |
+
rating = int(input("Rate the image (0 or 1): "))
|
| 56 |
+
if rating in [0, 1]:
|
| 57 |
+
break
|
| 58 |
+
else:
|
| 59 |
+
print("Invalid rating. Please enter 0 or 1.")
|
| 60 |
+
except ValueError:
|
| 61 |
+
print("Invalid input. Please enter a number.")
|
| 62 |
+
|
| 63 |
+
# Store the rating and other info
|
| 64 |
+
ratings.append(rating)
|
| 65 |
+
|
| 66 |
+
# Store the bounds and timestamp
|
| 67 |
+
bounds.append(bounds_sample[i])
|
| 68 |
+
timestamps.append(timestamps_sample[i])
|
| 69 |
+
|
| 70 |
+
image_id += 1 # Increment image ID
|
| 71 |
+
|
| 72 |
+
# Create a DataFrame from the collected data
|
| 73 |
+
df = pd.DataFrame({
|
| 74 |
+
"image_id": range(image_id),
|
| 75 |
+
"rating": ratings,
|
| 76 |
+
"bounds": bounds,
|
| 77 |
+
"timestamp": timestamps
|
| 78 |
+
})
|
| 79 |
+
|
| 80 |
+
# Save the DataFrame to a CSV file
|
| 81 |
+
df.to_csv("image_ratings_test.csv", index=False)
|
| 82 |
+
|
| 83 |
+
print("Test complete. Ratings saved to image_ratings_test.csv")
|