First commit
Browse files- app.py +96 -0
- requirements.txt +9 -0
app.py
ADDED
|
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
from diffusers import StableDiffusionXLImg2ImgPipeline
|
| 5 |
+
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
|
| 6 |
+
from PIL import Image, ImageEnhance, ImageOps
|
| 7 |
+
|
| 8 |
+
device = "cpu" # or "cuda" if you have a GPU
|
| 9 |
+
torch_dtype = torch.float32
|
| 10 |
+
|
| 11 |
+
print("Loading SDXL Img2Img model...")
|
| 12 |
+
pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained(
|
| 13 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 14 |
+
torch_dtype=torch_dtype
|
| 15 |
+
).to(device)
|
| 16 |
+
|
| 17 |
+
print("Loading bas-relief LoRA weights with PEFT...")
|
| 18 |
+
pipe.load_lora_weights(
|
| 19 |
+
"KappaNeuro/bas-relief",
|
| 20 |
+
weight_name="BAS-RELIEF.safetensors",
|
| 21 |
+
peft_backend="peft"
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
print("Loading DPT Depth Model...")
|
| 25 |
+
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large")
|
| 26 |
+
depth_model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large").to(device)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def enhance_depth_map(depth_arr: np.ndarray) -> Image.Image:
|
| 30 |
+
d_min, d_max = depth_arr.min(), depth_arr.max()
|
| 31 |
+
depth_stretched = (depth_arr - d_min) / (d_max - d_min + 1e-8)
|
| 32 |
+
depth_stretched = (depth_stretched * 255).astype(np.uint8)
|
| 33 |
+
|
| 34 |
+
depth_pil = Image.fromarray(depth_stretched)
|
| 35 |
+
depth_pil = ImageOps.autocontrast(depth_pil)
|
| 36 |
+
|
| 37 |
+
enhancer = ImageEnhance.Sharpness(depth_pil)
|
| 38 |
+
depth_pil = enhancer.enhance(2.0)
|
| 39 |
+
|
| 40 |
+
return depth_pil
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def generate_bas_relief_and_depth(input_image: Image.Image):
|
| 44 |
+
# Redimensionar a imagem para o tamanho esperado
|
| 45 |
+
input_image = input_image.resize((512, 512))
|
| 46 |
+
|
| 47 |
+
# Prompt fixo para ativar o LoRA
|
| 48 |
+
prompt = "BAS-RELIEF"
|
| 49 |
+
|
| 50 |
+
print("Gerando imagem no estilo baixo-relevo...")
|
| 51 |
+
result = pipe(
|
| 52 |
+
prompt=prompt,
|
| 53 |
+
image=input_image,
|
| 54 |
+
strength=0.7, # Controla a intensidade da transformação
|
| 55 |
+
num_inference_steps=15,
|
| 56 |
+
guidance_scale=7.5
|
| 57 |
+
)
|
| 58 |
+
generated_image = result.images[0]
|
| 59 |
+
|
| 60 |
+
print("Calculando mapa de profundidade...")
|
| 61 |
+
inputs = feature_extractor(generated_image, return_tensors="pt").to(device)
|
| 62 |
+
with torch.no_grad():
|
| 63 |
+
outputs = depth_model(**inputs)
|
| 64 |
+
predicted_depth = outputs.predicted_depth
|
| 65 |
+
|
| 66 |
+
prediction = torch.nn.functional.interpolate(
|
| 67 |
+
predicted_depth.unsqueeze(1),
|
| 68 |
+
size=generated_image.size[::-1],
|
| 69 |
+
mode="bicubic",
|
| 70 |
+
align_corners=False
|
| 71 |
+
).squeeze()
|
| 72 |
+
|
| 73 |
+
depth_map_pil = enhance_depth_map(prediction.cpu().numpy())
|
| 74 |
+
|
| 75 |
+
return generated_image, depth_map_pil
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
title = "Conversor para Baixo-relevo (SDXL + LoRA) com Mapa de Profundidade"
|
| 79 |
+
description = (
|
| 80 |
+
"Carrega stable-diffusion-xl-base-1.0 no CPU, aplica LoRA de 'KappaNeuro/bas-relief' "
|
| 81 |
+
"para transformar imagens em baixo-relevo e calcula o mapa de profundidade correspondente."
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
iface = gr.Interface(
|
| 85 |
+
fn=generate_bas_relief_and_depth,
|
| 86 |
+
inputs=gr.Image(label="Imagem de Entrada", type="pil"),
|
| 87 |
+
outputs=[
|
| 88 |
+
gr.Image(label="Imagem em Baixo-relevo"),
|
| 89 |
+
gr.Image(label="Mapa de Profundidade")
|
| 90 |
+
],
|
| 91 |
+
title=title,
|
| 92 |
+
description=description
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
if __name__ == "__main__":
|
| 96 |
+
iface.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
open3d
|
| 2 |
+
peft
|
| 3 |
+
accelerate
|
| 4 |
+
diffusers>=0.20.0
|
| 5 |
+
transformers>=4.30.0
|
| 6 |
+
torch
|
| 7 |
+
gradio
|
| 8 |
+
Pillow
|
| 9 |
+
safetensors
|