File size: 2,152 Bytes
1752d42
e6d46f7
b05ebf5
1752d42
 
 
b05ebf5
 
 
 
 
 
 
 
 
e6d46f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1752d42
e6d46f7
b05ebf5
 
 
 
 
1752d42
b05ebf5
1752d42
 
8e79534
b05ebf5
1752d42
b05ebf5
1752d42
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import gradio as gr
from PIL import Image
import numpy as np

# Placeholder function to simulate 3D model generation
def generate_3d_model(image):
    # Convert the uploaded image to a numpy array for processing
    image_array = np.array(image)

    # Placeholder logic: simply return the same image (you can replace this with actual processing)
    # Here you would typically use a 3D modeling library or call an external API to process the image
    processed_image = image_array  # This line simulates processing


    def generate_3d_model(image):
    # Here, you would replace this code with the logic to generate a 3D model
    # For this example, let's assume it saves a dummy 3D model file
    output_file = "output_model.obj"
    
    # Write a simple placeholder 3D model file
    with open(output_file, "w") as f:
        f.write("# This is a placeholder for a real 3D model\n")
        f.write("o Cube\n")
        f.write("v 0.000000 0.000000 0.000000\n")
        f.write("v 0.000000 1.000000 0.000000\n")
        f.write("v 1.000000 1.000000 0.000000\n")
        f.write("v 1.000000 0.000000 0.000000\n")
        f.write("v 0.000000 0.000000 1.000000\n")
        f.write("v 0.000000 1.000000 1.000000\n")
        f.write("v 1.000000 1.000000 1.000000\n")
        f.write("v 1.000000 0.000000 1.000000\n")
        f.write("f 1 2 3 4\n")
        f.write("f 5 6 7 8\n")
        f.write("f 1 5 8 4\n")
        f.write("f 2 6 7 3\n")
        f.write("f 1 2 6 5\n")
        f.write("f 4 3 7 8\n")

    return output_file
    
    # Convert back to PIL image for display
    result_image = Image.fromarray(processed_image)

    return result_image

# Define the Gradio interface using the updated syntax
iface = gr.Interface(
    fn=generate_3d_model,
    inputs=gr.Image(type="pil", label="Upload Jewelry Image"),
    outputs=gr.Image(type="pil", label="Generated 3D Model"),
    title="3D Jewelry Model Generator",
    description="Upload an image of jewelry to generate a 3D model. This is a placeholder for the actual 3D generation functionality.",
    theme="compact"
)

# Launch the interface
if __name__ == "__main__":
    iface.launch()