Update app.py
Browse files
app.py
CHANGED
@@ -1,118 +1,64 @@
|
|
1 |
-
import pdfplumber
|
2 |
-
import pandas as pd
|
3 |
import re
|
4 |
-
import
|
5 |
-
|
6 |
-
# Function: Extract Text from PDF
|
7 |
-
def extract_text_from_pdf(pdf_file):
|
8 |
-
with pdfplumber.open(pdf_file.name) as pdf:
|
9 |
-
text = ""
|
10 |
-
for page in pdf.pages:
|
11 |
-
text += page.extract_text()
|
12 |
-
return text
|
13 |
-
|
14 |
-
# Function: Clean Description
|
15 |
-
def clean_description(description, item_number=None):
|
16 |
-
"""
|
17 |
-
Cleans the description by removing unwanted data such as Qty, Unit, Unit Price, Total Price, and other invalid entries.
|
18 |
-
Args:
|
19 |
-
description (str): Raw description string.
|
20 |
-
item_number (int, optional): The item number being processed to handle item-specific cleaning.
|
21 |
-
Returns:
|
22 |
-
str: Cleaned description.
|
23 |
-
"""
|
24 |
-
# Remove common unwanted patterns
|
25 |
-
description = re.sub(r"\d+\s+(Nos\.|Set)\s+[\d.]+\s+[\d.]+", "", description) # Remove Qty + Unit + Price
|
26 |
-
description = re.sub(r"Page \d+ of \d+.*", "", description) # Remove page references
|
27 |
-
description = re.sub(r"\(Q\. No:.*?\)", "", description) # Remove Q.No-related data
|
28 |
-
description = re.sub(r"TOTAL EX-WORK.*", "", description) # Remove EX-WORK-related text
|
29 |
-
description = re.sub(r"NOTES:.*", "", description) # Remove notes section
|
30 |
-
description = re.sub(r"HS CODE.*", "", description) # Remove HS CODE-related data
|
31 |
-
description = re.sub(r"DELIVERY:.*", "", description) # Remove delivery instructions
|
32 |
-
|
33 |
-
# Specific removal for item 7
|
34 |
-
if item_number == 7:
|
35 |
-
description = re.sub(r"\b300 Sets 4.20 1260.00\b", "", description)
|
36 |
|
37 |
-
return description.strip()
|
38 |
|
39 |
-
def
|
40 |
"""
|
41 |
-
|
42 |
-
Ensures items are formatted correctly into rows and columns.
|
43 |
Args:
|
44 |
-
text (str):
|
45 |
Returns:
|
46 |
-
tuple: A DataFrame
|
47 |
"""
|
48 |
lines = text.splitlines()
|
49 |
data = []
|
50 |
-
current_item = None
|
51 |
-
description_accumulator = []
|
52 |
|
53 |
for line in lines:
|
54 |
-
# Match
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
if current_item:
|
59 |
-
current_item["Description"] = format_description(
|
60 |
-
" ".join(description_accumulator).strip()
|
61 |
-
)
|
62 |
-
data.append(current_item)
|
63 |
-
description_accumulator = []
|
64 |
-
|
65 |
-
# Start a new item
|
66 |
-
current_item = {
|
67 |
-
"Item": item_match.group("Item"),
|
68 |
-
"Description": "",
|
69 |
-
"Qty": "",
|
70 |
-
"Unit": "",
|
71 |
-
"Unit Price": "",
|
72 |
-
"Total Price": "",
|
73 |
-
}
|
74 |
-
description_accumulator.append(item_match.group("Description"))
|
75 |
-
elif current_item:
|
76 |
-
# Accumulate additional lines for the current item's description
|
77 |
-
description_accumulator.append(line.strip())
|
78 |
-
|
79 |
-
# Match Quantity, Unit, Unit Price, and Total Price
|
80 |
-
qty_match = re.search(r"(?P<Qty>\d+)\s+(Nos\.|Set)", line)
|
81 |
-
if qty_match:
|
82 |
-
current_item["Qty"] = qty_match.group("Qty")
|
83 |
-
current_item["Unit"] = qty_match.group(2)
|
84 |
-
|
85 |
-
price_match = re.search(r"(?P<UnitPrice>[\d.]+)\s+(?P<TotalPrice>[\d.]+)$", line)
|
86 |
-
if price_match:
|
87 |
-
current_item["Unit Price"] = price_match.group("UnitPrice")
|
88 |
-
current_item["Total Price"] = price_match.group("TotalPrice")
|
89 |
-
|
90 |
-
# Save the last item
|
91 |
-
if current_item:
|
92 |
-
current_item["Description"] = format_description(
|
93 |
-
" ".join(description_accumulator).strip()
|
94 |
)
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
if not data:
|
102 |
-
return None, "No
|
103 |
df = pd.DataFrame(data)
|
104 |
return df, "Data extracted successfully."
|
105 |
|
106 |
|
107 |
def format_description(description):
|
108 |
"""
|
109 |
-
Formats the description into multiple lines based on
|
110 |
Args:
|
111 |
description (str): Raw description text.
|
112 |
Returns:
|
113 |
-
str: Formatted description.
|
114 |
"""
|
115 |
-
#
|
116 |
line1 = re.search(r"Stainless Steel RATING AND DIAGRAM PLATE", description)
|
117 |
line2 = re.search(r"As per Drg\.No\..*?[A-Z0-9]+\s", description)
|
118 |
line3 = re.search(r"SIZE\s*:\s*\d+mm\s*X\s*\d+mm\s*X\s*[\d.]+mm\s*Thick", description)
|
@@ -132,36 +78,18 @@ def format_description(description):
|
|
132 |
return "\n".join(lines)
|
133 |
|
134 |
|
135 |
-
#
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
def process_pdf(file):
|
142 |
-
try:
|
143 |
-
text = extract_text_from_pdf(file)
|
144 |
-
df, status = parse_po_items_with_filters(text)
|
145 |
-
if df is not None:
|
146 |
-
output_path = save_to_excel(df)
|
147 |
-
return output_path, status
|
148 |
-
return None, status
|
149 |
-
except Exception as e:
|
150 |
-
return None, f"Error during processing: {str(e)}"
|
151 |
|
152 |
-
#
|
153 |
-
|
154 |
-
return gr.Interface(
|
155 |
-
fn=process_pdf,
|
156 |
-
inputs=gr.File(label="Upload PDF", file_types=[".pdf"]),
|
157 |
-
outputs=[
|
158 |
-
gr.File(label="Download Extracted Data"),
|
159 |
-
gr.Textbox(label="Status"),
|
160 |
-
],
|
161 |
-
title="PO Data Extraction",
|
162 |
-
description="Upload a Purchase Order PDF to extract items into an Excel file.",
|
163 |
-
)
|
164 |
|
165 |
-
|
166 |
-
|
167 |
-
|
|
|
|
|
|
|
|
|
|
1 |
import re
|
2 |
+
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
|
|
4 |
|
5 |
+
def extract_po_data(text):
|
6 |
"""
|
7 |
+
Extracts purchase order data from the text into structured rows with ITEM, DESCRIPTION, QTY, UNIT, UNIT PRICE, TOTAL PRICE.
|
|
|
8 |
Args:
|
9 |
+
text (str): Raw text extracted from the PDF.
|
10 |
Returns:
|
11 |
+
tuple: A DataFrame containing structured data and a status message.
|
12 |
"""
|
13 |
lines = text.splitlines()
|
14 |
data = []
|
|
|
|
|
15 |
|
16 |
for line in lines:
|
17 |
+
# Match table row patterns
|
18 |
+
row_match = re.match(
|
19 |
+
r"^(?P<Item>\d+)\s+(?P<Description>.+?)\s+(?P<Qty>\d+)\s+(?P<Unit>(Nos\.|Set))\s+(?P<UnitPrice>[\d.]+)\s+(?P<TotalPrice>[\d.]+)$",
|
20 |
+
line,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
)
|
22 |
+
if row_match:
|
23 |
+
# Extract fields
|
24 |
+
item = row_match.group("Item")
|
25 |
+
description = format_description(row_match.group("Description"))
|
26 |
+
qty = row_match.group("Qty")
|
27 |
+
unit = row_match.group("Unit")
|
28 |
+
unit_price = row_match.group("UnitPrice")
|
29 |
+
total_price = row_match.group("TotalPrice")
|
30 |
+
|
31 |
+
# Append to the data list
|
32 |
+
data.append(
|
33 |
+
{
|
34 |
+
"ITEM": item,
|
35 |
+
"DESCRIPTION": description,
|
36 |
+
"QTY": qty,
|
37 |
+
"UNIT": unit,
|
38 |
+
"UNIT PRICE": unit_price,
|
39 |
+
"TOTAL PRICE": total_price,
|
40 |
+
}
|
41 |
+
)
|
42 |
+
else:
|
43 |
+
# Log invalid row for debugging
|
44 |
+
print(f"Skipping line (does not match expected format): {line}")
|
45 |
+
|
46 |
+
# Convert to DataFrame
|
47 |
if not data:
|
48 |
+
return None, "No valid data found in the provided text."
|
49 |
df = pd.DataFrame(data)
|
50 |
return df, "Data extracted successfully."
|
51 |
|
52 |
|
53 |
def format_description(description):
|
54 |
"""
|
55 |
+
Formats the description field into multiple lines based on predefined structure.
|
56 |
Args:
|
57 |
description (str): Raw description text.
|
58 |
Returns:
|
59 |
+
str: Formatted description with line breaks.
|
60 |
"""
|
61 |
+
# Define patterns for splitting the description
|
62 |
line1 = re.search(r"Stainless Steel RATING AND DIAGRAM PLATE", description)
|
63 |
line2 = re.search(r"As per Drg\.No\..*?[A-Z0-9]+\s", description)
|
64 |
line3 = re.search(r"SIZE\s*:\s*\d+mm\s*X\s*\d+mm\s*X\s*[\d.]+mm\s*Thick", description)
|
|
|
78 |
return "\n".join(lines)
|
79 |
|
80 |
|
81 |
+
# Example Usage
|
82 |
+
if __name__ == "__main__":
|
83 |
+
# Example raw text (replace this with actual extracted text from PDF)
|
84 |
+
raw_text = """
|
85 |
+
1 Stainless Steel RATING AND DIAGRAM PLATE As per Drg.No. G 000822 RI RDP 50KVA NT00l 51 SIZE : l50mm X 160mm X 1.00mm Thick With Serial No:NT00151 97 to 121 Mfd:-2022 24 Nos. 3.00 72.00
|
86 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
+
# Extract data
|
89 |
+
df, status = extract_po_data(raw_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
+
# Output results
|
92 |
+
if df is not None:
|
93 |
+
print(df)
|
94 |
+
else:
|
95 |
+
print(status)
|